A mathematical model of blood flow in a permeable channel: application to flat plate dialyzer

2020 ◽  
Vol 95 (4) ◽  
pp. 045202 ◽  
Author(s):  
Muhammad Kahshan ◽  
Dianchen Lu ◽  
Mohammad Rahimi-Gorji ◽  
Hoang-Thinh Do
1995 ◽  
Vol 03 (03) ◽  
pp. 653-659 ◽  
Author(s):  
J. J. NIETO ◽  
A. TORRES

We introduce a new mathematical model of aneurysm of the circle of Willis. It is an ordinary differential equation of second order that regulates the velocity of blood flow inside the aneurysm. By using some recent methods of nonlinear analysis, we prove the existence of solutions with some qualitative properties that give information on the causes of rupture of the aneurysm.


1983 ◽  
Vol 6 (3) ◽  
pp. 127-130 ◽  
Author(s):  
C. Woffindin ◽  
N.A. Hoenich ◽  
D.N.S. Kerr

Data collected during the evaluation of a series of hemodialysers were analysed to see the effect of hematocrit on the clearance of urea and creatinine. All evaluations were performed on patients with a range of hematocrits with a mean close to 20%. The urea clearance of those in the upper half of the distribution curve (mean hematocrit 29.4%) was not significantly different from that of patients in the lower half of the distribution curve (mean hematocrit 16.9%) whether the clearance was studied at high or low blood flow rates and with hollow fibre or flat plate disposable hemodialysers. Likewise, there was no correlation between hematocrit and urea clearance by regression analysis. In contrast, the clearance of creatinine was affected by hematocrit being greater at lower hematocrit values. This difference was independent of blood flow rate and dialyser type and was confirmed by regression analysis.


1998 ◽  
Vol 274 (5) ◽  
pp. H1715-H1728 ◽  
Author(s):  
Mauro Ursino ◽  
Carlo Alberto Lodi

The relationships among cerebral blood flow, cerebral blood volume, intracranial pressure (ICP), and the action of cerebrovascular regulatory mechanisms (autoregulation and CO2 reactivity) were investigated by means of a mathematical model. The model incorporates the cerebrospinal fluid (CSF) circulation, the intracranial pressure-volume relationship, and cerebral hemodynamics. The latter is based on the following main assumptions: the middle cerebral arteries behave passively following transmural pressure changes; the pial arterial circulation includes two segments (large and small pial arteries) subject to different autoregulation mechanisms; and the venous cerebrovascular bed behaves as a Starling resistor. A new aspect of the model exists in the description of CO2 reactivity in the pial arterial circulation and in the analysis of its nonlinear interaction with autoregulation. Simulation results, obtained at constant ICP using various combinations of mean arterial pressure and CO2 pressure, substantially support data on cerebral blood flow and velocity reported in the physiological literature concerning both the separate effects of CO2 and autoregulation and their nonlinear interaction. Simulations performed in dynamic conditions with varying ICP underline the existence of a significant correlation between ICP dynamics and cerebral hemodynamics in response to CO2 changes. This correlation may significantly increase in pathological subjects with poor intracranial compliance and reduced CSF outflow. In perspective, the model can be used to study ICP and blood velocity time patterns in neurosurgical patients in order to gain a deeper insight into the pathophysiological mechanisms leading to intracranial hypertension and secondary brain damage.


1970 ◽  
Vol 37 (1) ◽  
pp. 34-37 ◽  
Author(s):  
George Rudinger

If the nonlinear equations for nonsteady blood flow are solved by the method of characteristics, shock discontinuities may develop as a result of omitting from the mathematical model some aspect of the system that becomes significant at rapid flow changes. As an illustration, the flow from the heart into the aorta at the beginning of systole is analyzed. An equation is derived which yields shock formation distances between a few centimeters and several meters depending on the elastic properties of the aorta. Since knowledge of the actual wave form would be useful for computer programming, a few exploratory experiments were performed with an unrestrained latex tube. They indicated wave transitions extending over several tube diameters, but maximum steepening of the wave has not yet been achieved.


2019 ◽  
Vol 44 (31) ◽  
pp. 17041-17047 ◽  
Author(s):  
Muhammad Kahshan ◽  
Dianchen Lu ◽  
Mohammad Rahimi-Gorji
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document