Atomistic effect of laterally and vertically growth shell on physical behaviours of CdSe/CdTe type-II core/crown and core/shell nanoplatelets: tight-binding theory

2021 ◽  
Vol 96 (12) ◽  
pp. 125867
Author(s):  
Worasak Sukkabot

Abstract Utilizing the atomistic tight-binding theory, the impact of the lateral and vertical potential confinement by the coated shell on the CdSe/CdTe core/crown and core/shell nanoplatelets (NPLs) is attained. The spatial charge separation and encapsulated shell have a noteworthy impact on the electronic structures and optical properties because of the type-II band profile. The reduced band gaps with the growing laterally and vertically passivated shell thicknesses are due to the quantum confinement phenomena. The optical band gaps adjusted across the visible light are achieved by the shell thickness change. The excitonic binding energies of CdSe/CdTe core/shell NPLs are larger than those of CdSe/CdTe core/crown NPLs. Thanks to the spatial charge separation, a shortening of the oscillation strengths is concomitant with an increase of the radiative lifetimes. Overall, this scientific research underlines the importance of the theoretical understanding and practical control by lateral and vertical confinement of heterostructure NPLs.

2003 ◽  
Vol 789 ◽  
Author(s):  
Garnett W. Bryant ◽  
W. Jaskolski

ABSTRACTSurface effects significantly influence the functionality of semiconductor nanocrystals. A theoretical understanding of these surface effects requires models capable of describing surface details at an atomic scale, passivation with molecular ligands, and few-monolayer capping shells. We present an atomistic tight-binding theory of the electronic structure and optical properties of passivated, unpassivated and core/shell nanocrystals to study these surface effects.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Worasak Sukkabot

Based on the atomistic tight-binding theory (TB) and a configuration interaction (CI) description, the electron-hole exchange interaction in the morphological transformation of CdSe/ZnS core/shell nanodisk to CdSe/ZnS core/shell nanorod is described with the aim of understanding the impact of the structural shapes on the change of the electron-hole exchange interaction. Normally, the ground hole states confined in typical CdSe/ZnS core/shell nanocrystals are of heavy hole-like character. However, the atomistic tight-binding theory shows that a transition of the ground hole states from heavy hole-like to light hole-like contribution with the increasing aspect ratios of the CdSe/ZnS core/shell nanostructures is recognized. According to the change in the ground-state hole characters, the electron-hole exchange interaction is also significantly altered. To do so, optical band gaps, ground-state electron character, ground-state hole character, oscillation strengths, ground-state coulomb energies, ground-state exchange energies, and dark-bright (DB) excitonic splitting (stoke shift) are numerically demonstrated. These atomistic computations obviously show the sensitivity with the aspect ratios. Finally, the alteration in the hole character has a prominent effect on dark-bright (DB) excitonic splitting.


2013 ◽  
Vol 12 (04) ◽  
pp. 1350019 ◽  
Author(s):  
Y. ZHAI ◽  
Y. L. ZHAO

A zwitterionic glycine (zGLY) is adopted as an example to study the impact of water environment (310 H2O molecules) on the molecular structure and energetics using a self-consistent-charge density-functional tight-binding theory based molecular dynamics (SCC-DFTB/MD) method. It is found that maximal eight hydrogen bonds could be formed simultaneously between eight water molecules and the zGLY. The ability of the COO- terminal to adsorb water molecules is stronger than the [Formula: see text] terminal with respect to hydrogen bonding with more water molecules and exhibits lower adiabatic adsorption energies. The zGLY's intramolecular hydrogen bond appeared unpredictably, without involving any proton transfer and generally helpful for enhancing the system stability. Water molecules play an important role to stabilize the zwitterionic amino acids and restrain the proton migration from the [Formula: see text] to the COO− group. Our results show that the SCC-DFTB/MD method could successfully describe geometry dynamical evolutions and energetics of biomolecules in a nanoscale simulation with the presence of a large number of water molecules. Our study not only verified the feasibility of a QM level methodology for describing the aqueous states of biochemical molecules, but also gave a clear evidence for the impact of water environment on amino acids.


2013 ◽  
Vol 117 (32) ◽  
pp. 7561-7570 ◽  
Author(s):  
Kaifeng Wu ◽  
Nianhui Song ◽  
Zheng Liu ◽  
Haiming Zhu ◽  
William Rodríguez-Córdoba ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document