Propagation of dust-acoustic nonlinear waves in a homogeneous collisional dusty plasma

2021 ◽  
Author(s):  
Badriah Alotaibi

Abstract Nonlinear propagation of dust-acoustic waves DAWs in a weakly collisional dusty plasma comprising warm adiabatic fluid dust particles, isothermal electrons, and ions is investigated. We used the reductive perturbation theory to reduce the basic set of fluid equations to one evolution equation, namely damped Kadomtsev--Petviashivili (DKP). The analytical stationary solutions of the DKP equation are numerically analyzed, and the effect of various dusty plasma parameters on DAWs wave propagation is taken into account. We obtained, blast, anti-kink, periodic cnoidal and cnoidal waves. It is well known that explosive waves are a double edged sword. They can be seen, for example, in the atmosphere, or in engineering applications in metal coating. _______________________________________________

2015 ◽  
Vol 81 (6) ◽  
Author(s):  
U. Zakir ◽  
Q. Haque ◽  
N. Imtiaz ◽  
A. Qamar

The properties of dust acoustic and drift waves are investigated in a charge varying magnetized dusty plasma. The plasma is composed of non-thermal electrons and ions with dynamic dust particles. The mathematical expression which describes the dust charge fluctuation is obtained using ${\it\kappa}$-distribution for both the electrons and ions. A dispersion relation is derived and analysed numerically by choosing space plasma parameters. It is found that the inclusion of variable dust charge along with the non-thermal effects of electrons and ions significantly affect linear/nonlinear properties of the dust acoustic and dust drift waves. The effects of different physical parameters including spectral index (${\it\kappa}$), dust charge number ($Z_{d}$), electron density ($n_{e}$) and ion temperature ($T_{i}$) on the wave dispersion and instability are presented. It is found that the presence of the non-thermal electron and ion populations reduce the growth rate of the instability which arises due to the dust charging effect. In addition, the nonlinear vortex solutions are also obtained. For illustration, the results are analysed by using the dusty plasma parameters of Saturn’s magnetosphere.


2015 ◽  
Vol 93 (10) ◽  
pp. 1030-1038 ◽  
Author(s):  
Apul N. Dev ◽  
Jnanjyoti Sarma ◽  
Manoj K. Deka

Using the well-known reductive perturbation technique, the three-dimensional (3D) Burgers equation and modified 3D Burgers equation have been derived for a plasma system comprising of non-thermal ions, Maxwellian electrons, and negatively charged fluctuating dust particles. The salient features of nonlinear propagation of shock waves in such plasmas have been investigated in detail. The different temperature non-thermal ions and Maxwellian electrons are found to play an important role in the shock waves solution. The analytical solution of the 3D Burgers equation and modified 3D Burgers equation ratifying the propagation of dust acoustic shock waves are derived using the well-known tanh method. On increasing the population of non-thermal ions, an enhancement in the amplitude of shock waves is seen for negatively charged dust particles. A striking dependence of amplitude and width of shock waves on the ratio of ion temperatures and densities are also reported. Finally we introduced a new stretching coordinate and perturbation for the nth-order nonlinear 3D Burgers equation and its solution by the use of the tanh method. We found that, due to higher nonlinearity, the amplitude of shock waves decreases while width remains constant for all plasma parameters considered in the present investigation. The features accounted here could be relevant in the case of different space and astrophysical plasmas and laboratory dusty plasma for negatively charged dust fluctuation.


1998 ◽  
Vol 59 (3) ◽  
pp. 575-580 ◽  
Author(s):  
A. A. MAMUN

A theoretical investigation has been made of the nonlinear propagation of dust-acoustic waves in a magnetized three-component dusty plasma consisting of a negatively charged dust fluid, free electrons and vortex-like distributed ions. It is found that, owing to the departure from the Boltzmann ion distribution to a vortex-like one, the dynamics of small- but finite-amplitude dust-acoustic waves in a magnetized dusty plasma is governed by the modified Korteweg–de Vries equation. The latter admits a stationary dust-acoustic solitary-wave solution that has larger amplitude, smaller width and higher propagation velocity than that involving adiabatic ions. The effects of external magnetic field, trapped ions and free electrons on the properties of these dust-acoustic solitary waves are briefly discussed.


1998 ◽  
Vol 60 (3) ◽  
pp. 551-567 ◽  
Author(s):  
S. V. SINGH ◽  
N. N. RAO ◽  
P. K. SHUKLA

The nonlinear propagation of coupled Langmuir and dust-acoustic waves in a multi-component dusty plasma is considered. The coupled mode propagation is described by a Schrödinger–Boussinesq system, which reduces to the Schrödinger–KdV system for unidirectional wave propagation. For stationary propagation, the coupled waves are governed by a generic Hamiltonian that is integrable in both sub- and the supersonic regimes of Mach number. Depending on the parameter regimes, exact analytical solutions for the coupled waves having single-, double- and triple-hump structures for the Langmuir field intensity are obtained. The exact governing equations for large-amplitude waves are also derived, and are solved approximately. The existence conditions for large-amplitude localized solutions in the quasineutral limit are discussed.


2017 ◽  
Vol 24 (1) ◽  
pp. 013704 ◽  
Author(s):  
Essam M. Abulwafa ◽  
Atalla M. Elhanbaly ◽  
Abeer A. Mahmoud ◽  
Abd-alrahman F. Al-Araby

Sign in / Sign up

Export Citation Format

Share Document