Multi-scroll fractional-order chaotic system and finite-time synchronization

2022 ◽  
Author(s):  
Shaohui Yan ◽  
Qiyu Wang ◽  
Ertong Wang ◽  
Xi Sun ◽  
Zhenlong Song

Abstract The definition of fractional calculus is introduced into the 5D chaotic system, and the 5D fractional-order chaotic system is obtained. The new 5D fractional-order chaotic system has no equilibrium, multi-scroll hidden attractor and multi-stability. By analyzing the time-domain waveform, phase diagram, bifurcation diagram and complexity, it is found that the system has no equilibrium but is very sensitive to parameters and initial values. With the variation of different parameters, the system can produce attractors of different scroll types accompanied by bursting oscillation. Secondly, the multi-stability of the hidden attractor is studied. Different initial values lead to the coexistence of attractors of different scroll number, which shows the advantages of the system. The correctness and realizability of the fractional-order chaotic system are proved by analog circuit and physical implement. Finally, because of the high security of multi-scroll attractor and hidden attractor, finite-time synchronization based on the fractional-order chaotic system is studied, which has a good application prospect in the field of secure communication.

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Guangchao Zheng ◽  
Ling Liu ◽  
Chongxin Liu

In this paper, a novel three-dimensional fractional-order chaotic system without equilibrium, which can present symmetric hidden coexisting chaotic attractors, is proposed. Dynamical characteristics of the fractional-order system are analyzed fully through numerical simulations, mainly including finite-time local Lyapunov exponents, bifurcation diagram, and the basins of attraction. In particular, the system can generate diverse coexisting attractors varying with different orders, which presents ample and complex dynamic characteristics. And there is great potential for secure communication. Then electronic circuit of the fractional-order system is designed to help verify its effectiveness. What is more, taking the disturbances into account, a finite-time synchronization of the fractional-order chaotic system without equilibrium is achieved and the improved controller is proven strictly by applying finite-time stable theorem. Eventually, simulation results verify the validity and rapidness of the proposed method. Therefore, the fractional-order chaotic system with hidden attractors can present better performance for practical applications, such as secure communication and image encryption, which deserve further investigation.


Author(s):  
Zuoxun Wang ◽  
Jiaxun Liu ◽  
Fangfang Zhang ◽  
Sen Leng

Although a large number of hidden chaotic attractors have been studied in recent years, most studies only refer to integer-order chaotic systems and neglect the relationships among chaotic attractors. In this paper, we first extend LE1 of sprott from integer-order chaotic systems to fractional-order chaotic systems, and we add two constant controllers which could produce a novel fractional-order chaotic system with hidden chaotic attractors. Second, we discuss its complicated dynamic characteristics with the help of projection pictures and bifurcation diagrams. The new fractional-order chaotic system can exhibit self-excited attractor and three different types of hidden attractors. Moreover, based on fractional-order finite time stability theory, we design finite time synchronization scheme of this new system. And combination synchronization of three fractional-order chaotic systems with hidden chaotic attractors is also derived. Finally, numerical simulations demonstrate the effectiveness of the proposed synchronization methods.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Yan Cui ◽  
Hongjun He ◽  
Guan Sun ◽  
Chenhui Lu

In this paper, we present a corresponding fractional order three-dimensional autonomous chaotic system based on a new class of integer order chaotic systems. We found that the fractional order chaotic system belongs to the generalized Lorenz system family by analyzing its linear term and topological structure. We also found that the equilibrium point generated by the fractional order system belongs to the unstable saddle point through the prediction correction method and the fractional order stability theory. The complexity of fractional order chaotic system is given by spectral entropy algorithm andC0algorithm. We concluded that the fractional order chaotic system has a higher complexity. The fractional order system can generate rich dynamic behavior phenomenon with the values of the parameters and the order changed. We applied the finite time stability theory to design the finite time synchronous controller between drive system and corresponding system. The numerical simulations demonstrate that the controller provides fast and efficient method in the synchronization process.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Junbiao Guan ◽  
Kaihua Wang

A new fractional-order chaotic system is addressed in this paper. By applying the continuous frequency distribution theory, the indirect Lyapunov stability of this system is investigated based on sliding mode control technique. The adaptive laws are designed to guarantee the stability of the system with the uncertainty and external disturbance. Moreover, the modified generalized projection synchronization (MGPS) of the fractional-order chaotic systems is discussed based on the stability theory of fractional-order system, which may provide potential applications in secure communication. Finally, some numerical simulations are presented to show the effectiveness of the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document