Quantum noise, quantum measurement, and squeezing

2004 ◽  
Vol 6 (8) ◽  
pp. S626-S633 ◽  
Author(s):  
Herman A Haus
Author(s):  
Yanbei Chen

The quantum measurement process connects the quantum world and the classical world. The phrase ‘quantum measurement’ can have two meanings: measurement of a weak classical force, with the impact of quatum fluctuations on the measurement sensitivity, and the quantum mechanics of macroscopic objects: to try to prepare, manipulate and characterize the quantum state of a macroscopic quantum object through quantum measurement. Quantum noise leads to the Standard Quantum Limit (SQL), which provides the magnitude in which we must consider both measurement precision and measurement-induced back-action. The beginning of the chapter will be devoted to this thread of thought. The free-mass SQL actually provides a benchmark for the ‘quantum-ness’ of the system. We will show that a sub-SQL device can be used to prepare nearly pure quantum states and mechanical entanglement, as well as non-Gaussian quantum states that have no classical counterparts.


Author(s):  
J. Langmore ◽  
M. Isaacson ◽  
J. Wall ◽  
A. V. Crewe

High resolution dark field microscopy is becoming an important tool for the investigation of unstained and specifically stained biological molecules. Of primary consideration to the microscopist is the interpretation of image Intensities and the effects of radiation damage to the specimen. Ignoring inelastic scattering, the image intensity is directly related to the collected elastic scattering cross section, σɳ, which is the product of the total elastic cross section, σ and the eficiency of the microscope system at imaging these electrons, η. The number of potentially bond damaging events resulting from the beam exposure required to reduce the effect of quantum noise in the image to a given level is proportional to 1/η. We wish to compare η in three dark field systems.


Author(s):  
H. Rose

The scanning transmission electron microscope offers the possibility of utilizing inelastically scattered electrons. Use of these electrons in addition to the elastically scattered electrons should reduce the scanning time (dose) Which is necessary to keep the quantum noise below a certain level. Hence it should lower the radiation damage. For high resolution, Where the collection efficiency of elastically scattered electrons is small, the use of Inelastically scattered electrons should become more and more favorable because they can all be detected by means of a spectrometer. Unfortunately, the Inelastic scattering Is a non-localized interaction due to the electron-electron correlation, occurring predominantly at the circumference of the atomic electron cloud.


Author(s):  
T. Oikawa ◽  
N. Mori ◽  
T. Katoh ◽  
Y. Harada ◽  
J. Miyahara ◽  
...  

The “Imaging Plate”(IP) is a highly sensitive image recording plate for X-ray radiography. It has been ascertained that the IP has superior properties and high practicability as an image recording material in a TEM. The sensitivity, one of the properties, is about 3 orders higher than that of conventional photo film. The IP is expected to be applied to low dose techniques. In this paper, an estimation of the quantum noise on the TEM image which appears in case of low electron dose on the IP is reported.In this experiment, the JEM-2000FX TEM and an IP having the same size as photo film were used.Figure 1 shows the schematic diagram of the total system including the TEM used in this experiment. In the reader, He-Ne laser light is scanned across the IP, then blue light is emitted from the IP.


Author(s):  
Vladimir B. Braginsky ◽  
Farid Ya Khalili ◽  
Kip S. Thorne
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document