scholarly journals Evaluation of synovium-derived mesenchymal stem cells and 3D printed nanocomposite scaffolds for tissue engineering

2015 ◽  
Vol 16 (4) ◽  
pp. 045001 ◽  
Author(s):  
Jian-Feng Pan ◽  
Shuo Li ◽  
Chang-An Guo ◽  
Du-Liang Xu ◽  
Feng Zhang ◽  
...  
2017 ◽  
Vol 3 (4) ◽  
pp. 045005 ◽  
Author(s):  
Natasha Maurmann ◽  
Daniela P Pereira ◽  
Daniela Burguez ◽  
Frederico D A de S Pereira ◽  
Paulo Inforçatti Neto ◽  
...  

2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Yanyan Cao ◽  
Peng Cheng ◽  
Shengbo Sang ◽  
Chuan Xiang ◽  
Yang An ◽  
...  

Abstract Cartilage has limited self-repair ability due to its avascular, alymphatic and aneural features. The combination of three-dimensional (3D) printing and tissue engineering provides an up-and-coming approach to address this issue. Here, we designed and fabricated a tri-layered (superficial layer (SL), middle layer (ML) and deep layer (DL)) stratified scaffold, inspired by the architecture of collagen fibers in native cartilage tissue. The scaffold was composed of 3D printed depth-dependent gradient poly(ε-caprolactone) (PCL) impregnated with methacrylated alginate (ALMA), and its morphological analysis and mechanical properties were tested. To prove the feasibility of the composite scaffolds for cartilage regeneration, the viability, proliferation, collagen deposition and chondrogenic differentiation of embedded rat bone marrow mesenchymal stem cells (BMSCs) in the scaffolds were assessed by Live/dead assay, CCK-8, DNA content, cell morphology, immunofluorescence and real-time reverse transcription polymerase chain reaction. BMSCs-loaded gradient PCL/ALMA scaffolds showed excellent cell survival, cell proliferation, cell morphology, collagen II deposition and hopeful chondrogenic differentiation compared with three individual-layer scaffolds. Hence, our study demonstrates the potential use of the gradient PCL/ALMA construct for enhanced cartilage tissue engineering.


Bioprinting ◽  
2021 ◽  
Vol 21 ◽  
pp. e00117
Author(s):  
Maryam Rezai Rad ◽  
Farahnaz Fahimipour ◽  
Erfan Dashtimoghadam ◽  
Hanieh Nokhbatolfoghahaei ◽  
Lobat Tayebi ◽  
...  

2021 ◽  
Vol 9 (20) ◽  
pp. 6813-6829
Author(s):  
Paula Camacho ◽  
Anne Behre ◽  
Matthew Fainor ◽  
Kelly B. Seims ◽  
Lesley W. Chow

Peptide-functionalized 3D-printed scaffolds drive mesenchymal stem cells (MSCs) differentiation towards osteogenesis or chondrogenesis based on the presence and organization of both cartilage-promoting and bone-promoting peptides.


2020 ◽  
Vol 15 (7) ◽  
pp. 602-606
Author(s):  
Kun Ji ◽  
Ling Ding ◽  
Xi Chen ◽  
Yun Dai ◽  
Fangfang Sun ◽  
...  

Mesenchymal Stem Cells (MSCs) exhibit enormous therapeutic potential because of their indispensable regenerative, reparative, angiogenic, anti-apoptotic, and immunosuppressive properties. MSCs can best differentiate into mesodermal cell lineages, including osteoblasts, adipocytes, muscle cells, endothelial cells and chondrocytes. Specific differentiation of MSCs could be induced through limited conditions. In addition to the relevant differentiation factors, drastic changes also occur in the microenvironment to conduct it in an optimal manner for particular differentiation. Recent evidence suggests that the mitochondria participate in the regulating of direction and process of MSCs differentiation. Therefore, our current review focuses on how mitochondria participate in both osteogenesis and adipogenesis of MSC differentiation. Besides that, in our current review, we try to provide a further understanding of the relationship between the behavior of mitochondria and the direction of MSC differentiation, which could optimize current cellular culturing protocols for further facilitating tissue engineering by adjusting specific conditions of stem cells.


2014 ◽  
Vol 9 (3) ◽  
pp. 280-289 ◽  
Author(s):  
Lin Zhang ◽  
Ge Feng ◽  
Xing Wei ◽  
Lan Huang ◽  
Aishu Ren ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 927
Author(s):  
Ki-Taek Lim ◽  
Dinesh-K. Patel ◽  
Sayan-Deb Dutta ◽  
Keya Ganguly

Human mesenchymal stem cells (hMSCs) have the potential to differentiate into different types of mesodermal tissues. In vitro proliferation and differentiation of hMSCs are necessary for bone regeneration in tissue engineering. The present study aimed to design and develop a fluid flow mechanically-assisted cartridge device to enhance the osteogenic differentiation of hMSCs. We used the fluorescence-activated cell-sorting method to analyze the multipotent properties of hMSCs and found that the cultured cells retained their stemness potential. We also evaluated the cell viabilities of the cultured cells via water-soluble tetrazolium salt 1 (WST-1) assay under different rates of flow (0.035, 0.21, and 0.35 mL/min) and static conditions and found that the cell growth rate was approximately 12% higher in the 0.035 mL/min flow condition than the other conditions. Moreover, the cultured cells were healthy and adhered properly to the culture substrate. Enhanced mineralization and alkaline phosphatase activity were also observed under different perfusion conditions compared to the static conditions, indicating that the applied conditions play important roles in the proliferation and differentiation of hMSCs. Furthermore, we determined the expression levels of osteogenesis-related genes, including the runt-related protein 2 (Runx2), collagen type I (Col1), osteopontin (OPN), and osteocalcin (OCN), under various perfusion vis-à-vis static conditions and found that they were significantly affected by the applied conditions. Furthermore, the fluorescence intensities of OCN and OPN osteogenic gene markers were found to be enhanced in the 0.035 mL/min flow condition compared to the control, indicating that it was a suitable condition for osteogenic differentiation. Taken together, the findings of this study reveal that the developed cartridge device promotes the proliferation and differentiation of hMSCs and can potentially be used in the field of tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document