scholarly journals Light scalars in neutron star mergers

2022 ◽  
Vol 2022 (01) ◽  
pp. 006
Author(s):  
P.S. Bhupal Dev ◽  
Jean-François Fortin ◽  
Steven P. Harris ◽  
Kuver Sinha ◽  
Yongchao Zhang

Abstract Due to their unique set of multimessenger signals, neutron star mergers have emerged as a novel environment for studies of new physics beyond the Standard Model (SM). As a case study, we consider the simplest extension of the SM scalar sector involving a light CP-even scalar singlet S mixing with the SM Higgs boson. These S particles can be produced abundantly in neutron star mergers via the nucleon bremsstrahlung process. We show that the S particles may either be trapped in or stream freely out of the merger remnant, depending on the S mass, its mixing with the SM Higgs boson, and the temperature and baryon density in the merger. In the free-streaming region, the scalar S will provide an extra channel to cool down the merger remnant, with cooling timescales as small as 𝒪(ms). On the other hand, in the trapped region, the Bose gas of S particles could contribute a larger thermal conductivity than the trapped neutrinos in some parts of the parameter space, thus leading to faster thermal equilibration than expected. Therefore, future observations of the early postmerger phase of a neutron star merger could effectively probe a unique range of the S parameter space, largely complementary to the existing and future laboratory and supernova limits. In view of these results, we hope the merger simulation community will be motivated to implement the effects of light CP-even scalars into their simulations in both the free-streaming and trapped regimes.

2018 ◽  
Vol 33 (10n11) ◽  
pp. 1830007 ◽  
Author(s):  
Agnieszka Ilnicka ◽  
Tania Robens ◽  
Tim Stefaniak

We give a brief overview of beyond the Standard Model (BSM) theories with an extended scalar sector and their phenomenological status in the light of recent experimental results. We discuss the relevant theoretical and experimental constraints, and show their impact on the allowed parameter space of two specific models: the real scalar singlet extension of the Standard Model (SM) and the Inert Doublet Model. We emphasize the importance of the LHC measurements, both the direct searches for additional scalar bosons, as well as the precise measurements of properties of the Higgs boson of mass 125 GeV. We show the complementarity of these measurements to electroweak and dark matter observables.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2341
Author(s):  
Tania Robens

The THDMa is a new physics model that extends the scalar sector of the Standard Model by an additional doublet as well as a pseudoscalar singlet and allows for mixing between all possible scalar states. In the gauge-eigenbasis, the additional pseudoscalar serves as a portal to the dark sector, with a priori any dark matter spins states. The option where dark matter is fermionic is currently one of the standard benchmarks for the experimental collaborations, and several searches at the LHC constrain the corresponding parameter space. However, most current studies constrain regions in parameter space by setting all but 2 of the 12 free parameters to fixed values. In this work, we performed a generic scan on this model, allowing all parameters to float. We applied all current theoretical and experimental constraints, including bounds from current searches, recent results from B-physics, in particular Bs→Xsγ, as well as bounds from astroparticle physics. We identify regions in the parameter space which are still allowed after these were applied and which might be interesting for an investigation of current and future collider machines.


2004 ◽  
Vol 19 (13) ◽  
pp. 2183-2206 ◽  
Author(s):  
MIGUEL ANGEL SANCHIS-LOZANO

In this work, we examine the possible existence of new physics beyond the standard model which could modify the branching fractions of the leptonic (mainly tauonic) decays of bottomonium vector resonances below the [Formula: see text] threshold. The decay width is factorized as the product of two pieces: (a) the probability of an intermediate pseudoscalar color-singlet [Formula: see text] state (coupling to the dominant Fock state of the Upsilon via a magnetic dipole transition) and a soft (undetected) photon; (b) the annihilation width of the [Formula: see text] pair into two leptons, mediated by a non-standard CP-odd Higgs boson of mass about 10 GeV, introducing a quadratic dependence on the lepton mass in the partial width. The process would be unwittingly ascribed to the ϒ leptonic channel thereby (slightly) breaking lepton universality. A possible mixing of the pseudoscalar Higgs and bottomonium resonances is also considered. Finally, several experimental signatures to check out the validity of the conjecture are discussed.


2016 ◽  
Vol 31 (32) ◽  
pp. 1630058
Author(s):  
Tejinder Singh Virdee

Since 2010 there has been a rich harvest of results on standard model physics by the ATLAS and CMS experiments operating on the Large Hadron Collider. In the summer of 2012, a spectacular discovery was made by these experiments of a new, heavy particle. All the subsequently analysed data point strongly to the properties of this particle as those expected for the Higgs boson associated with the Brout–Englert–Higgs mechanism postulated to explain the spontaneous symmetry breaking in the electroweak sector, thereby explaining how elementary particles acquire mass. This article focuses on the CMS experiment, the technological challenges encountered in its construction, describing some of the physics results obtained so far, including the discovery of the Higgs boson, and searches for the widely anticipated new physics beyond the standard model, and peer into the future involving the high-luminosity phase of the LHC. This article is complementary to the one by Peter Jenni4 that focuses on the ATLAS experiment.


2019 ◽  
Author(s):  
Lara Katharina Schildgen

Since its discovery in 2012, the Higgs boson has served as an important probe for precision measurements of the Standard Model and for searches for new physics beyond the Standard Model. One major goal of the LHC is the precise measurement of the Higgs Yukawa couplings to fermions. The latest ATLAS results of measurements of the Higgs boson decaying to leptons are presented, namely the cross-section measurement of the Higgs boson decay to two tau leptons and the searches for the di-muon decay and lepton-flavour-violating decays of the Higgs boson.


2019 ◽  
pp. 3-10
Author(s):  
T.V. Obikhod ◽  
E.A. Petrenko

Using the latest experimental data, performed by ATLAS Collaboration and within the framework of the Minimal Supersymmetric Standard Model, we presented the calculations for cross sections times branching fractions, σ×Br, as a functions of the CP-even, H, Higgs boson mass, CP-odd, A, Higgs boson mass and charged, H±, Higgs boson mass. Using the restricted parameter set, received from the hMSSM+HDECAY and ”low-tb-high” scenarios, with the help of the computer programs SOFTSUSY, Prospino and SusHi, we received the large values of σ ×Br for A and H bosons at tanβ=2 for the planned 14 TeV at the LHC and found the large σ ×Br at tanβ=30 for charged Higgs boson. The obtained results are of experimental interest as they are connected with the experimental searches for new physics beyond the Standard Model at the LHC.


2021 ◽  
pp. 11-13
Author(s):  
T.V. Obikhod ◽  
E.A. Petrenko

As part of the search for new physics beyond the Standard Model, we chose the determination of the Higgs boson decay width as one of the least experimentally determined values. The decay widths into the four fermions of the lightest and heaviest CP-even Higgs bosons of the THDM model were calculated, taking into account QCD and electroweak corrections in the NLO approximation. To achieve this goal, the program Monte Carlo Prophecy 4f with special scenarios of parameters, 7B1 and 5B1 were used. It was found that the decay width of the heavier CPeven Higgs boson H differs from HSM by 1227.93 times and changes to a negative value when deviating from the standard scenarios. Scale factors kZ2 and kW2 showed the predominance of the associated with Z boson production cross section of CP-even Higgs boson over the associated with W production cross section.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Aoife Bharucha ◽  
Diogo Boito ◽  
Cédric Méaux

Abstract In this paper we consider the decay D+ → π+ℓ+ℓ−, addressing in particular the resonance contributions as well as the relatively large contributions from the weak annihilation diagrams. For the weak annihilation diagrams we include known results from QCD factorisation at low q2 and at high q2, adapting the existing calculation for B decays in the Operator Product Expansion. The hadronic resonance contributions are obtained through a dispersion relation, modelling the spectral functions as towers of Regge-like resonances in each channel, as suggested by Shifman, imposing the partonic behaviour in the deep Euclidean. The parameters of the model are extracted using e+e− → (hadrons) and τ → (hadrons) + ντ data as well as the branching ratios for the resonant decays D+ → π+R(R → ℓ+ℓ−), with R = ρ, ω, and ϕ. We perform a thorough error analysis, and present our results for the Standard Model differential branching ratio as a function of q2. Focusing then on the observables FH and AFB, we consider the sensitivity of this channel to effects of physics beyond the Standard Model, both in a model independent way and for the case of leptoquarks.


Sign in / Sign up

Export Citation Format

Share Document