Actively Q-switched Nd:YLF laser emitting at 908 nm

Laser Physics ◽  
2021 ◽  
Vol 32 (1) ◽  
pp. 015801
Author(s):  
Jiale Zhang ◽  
Jian Ma ◽  
Tingting Lu ◽  
Xiaolei Zhu

Abstract An actively Q-switched quasi-three-level Nd:YLF laser emitting at 908 nm, for the first time to our knowledge, was demonstrated. A RTP double-crystal scheme was used to realize electro-optical Q-switcher, and a L-shaped cavity structure was designed to suppress parasitic oscillation at 1047 nm. An 806 nm laser diode was used as the pump source with about 480 μs pulse width. With 46.4 mJ pump pulse energy input at repetition rate of 100 Hz, maximum output pulse energies of 0.84 mJ and 0.73 mJ were obtained with output transmissions of 6.5% and 11%, respectively. The corresponding peak pulse powers were up to 14.3 kW and 12.1 kW, and the output pulse widths were 58.6 ns and 60.3 ns. The central laser wavelengths were both at 908.3 nm with spectral bandwidth of over 0.7 nm.

Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1200 ◽  
Author(s):  
Taijin Wang ◽  
Yonggang Wang ◽  
Jiang Wang ◽  
Jing Bai ◽  
Guangying Li ◽  
...  

In this work, a Tungsten disulfide (WS2) reflective saturable absorber (SA) fabricated using the Langmuir–Blodgett technique was used in a solid state Nd:YVO4 laser operating at 1.34 µm. A Q-switched laser was constructed. The shortest pulse width was 409 ns with the repetition rate of 159 kHz, and the maximum output power was 338 mW. To the best of our knowledge, it is the first time that short laser pulses have been generated in a solid state laser at 1.34 µm using a reflective WS2 SA fabricated by the Langmuir–Blodgett method.


2018 ◽  
Vol 7 (4.30) ◽  
pp. 313
Author(s):  
Noor U.H.H. Zalkepali ◽  
Noor A. Awang ◽  
Yushazlina R. Yuzaile ◽  
Amirah A . Latif ◽  
Fauzan Ahmad ◽  
...  

This paper demonstrates on an antimony telluride (Sb2Te3) thin film sandwiched between two fiber ferrule as saturable absorber for Q-switched pulsed Erbium doped fiber (EDF) laser. The saturable absorber is fabricated by dissolving Antimony (III) Telluride powder into PVA solution and dry in the ambient temperature for 48 hours. Then, 1 mm2 x 1 mm2 Sb2Te3-PVA film based saturable absorber is sandwiched in between FC/PC ferrule for Q-switched laser generation. The modulation depth of the Sb2Te3 is measured as 28.01% with input intensity 0.02 MW/cm2. The developed passive saturable absorber integrated in EDF laser in ring cavity and the characterised pulse is with repetition rates of 30.21 kHz, shortest pulse width of 3.26 µs and signal-noise-ratio (SNR) of 42 dB. The maximum output pulse energy is achieved at pump power 69.5 mW with 29.5 nJ and the output power 0.89 mW.


1999 ◽  
Vol 48 (6) ◽  
pp. 1018-1022 ◽  
Author(s):  
K. Kuroda ◽  
H. Takakura
Keyword(s):  

Laser Physics ◽  
2021 ◽  
Vol 32 (2) ◽  
pp. 025801
Author(s):  
Xiangrui Liu ◽  
Zhuang Li ◽  
Chengkun Shi ◽  
Bo Xiao ◽  
Run Fang ◽  
...  

Abstract We demonstrated 22 W LD-pumped high-power continuous-wave (CW) deep red laser operations at 718.5 and 720.8 nm based on an a-cut Pr3+:YLF crystal. The output power of both polarized directions reached the watt-level without output power saturation. A single wavelength laser operated at 720.8 nm in the π-polarized direction was achieved, with a high output power of 4.5 W and high slope efficiency of approximately 41.5%. To the best of our knowledge, under LD-pumped conditions, the laser output power and slope efficiency are the highest at 721 nm. By using a compact optical glass plate as an intracavity etalon, we suppressed the π-polarized 720.8 nm laser emission. And σ-polarized single-wavelength laser emission at 718.5 nm was achieved, with a maximum output power of 1.45 W and a slope efficiency of approximately 17.8%. This is the first time that we have achieved the σ-polarized laser emission at 718.5 nm generated by Pr3+:YLF lasers.


Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 732
Author(s):  
Feilong Gao ◽  
Yuan Li ◽  
Zhenhua Cong ◽  
Xingyu Zhang ◽  
Zhaojun Liu ◽  
...  

This paper reports the characteristics of an injection-seeded terahertz parametric oscillator (TPO) with a ring-cavity configuration based on the MgO:LiNbO3 crystal. The ring cavity is constituted of three mirrors and the THz wave output surface where the pump and Stokes beams are totally reflected. The THz pulse energies and the Stokes pulse energies as functions of the pump pulse energy for different seed powers of 47.5 mW, 150.7 mW, and 312.8 mW were investigated. The experimental results showed that the injection-seeded ring cavity TPO exhibited the benefits of lower pump thresholds and higher output energies for the Stokes and THz waves. The smaller the pump pulse energy, the more obvious the effect of the seed injection. The reasons for the laser performance improvement were analyzed.


Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 861
Author(s):  
Lina Zhao ◽  
Luyang Tong ◽  
Fangxin Cai ◽  
Ye Yuan ◽  
Yangjian Cai

We present a high-power, wavelength-tunable picosecond Yb3+: CaGdAlO4 (Yb:CALGO) laser based on MgO-doped lithium niobate (MgO:LN) nonlinear mirror mode locking. The output wavelength in the continuous wave (CW) regime is tunable over a 45 nm broad range. Mode locking with a MgO:LN nonlinear mirror, the picosecond laser is tunable over 23 nm from 1039 to 1062 nm. The maximum output power of the mode-locked laser reaches 1.46 W, and the slope efficiency is 18.6%. The output pulse duration at 1049 nm is 8 ps. The laser repetition rate and bandwidth are 115.5 MHz and 1.7 nm, respectively.


1986 ◽  
Vol 82 ◽  
Author(s):  
T. S. Ananthanarayanan ◽  
R. G. Rosemeier ◽  
W. E. Mayo ◽  
J. H. Dinan

SUMMARYThere is a considerable body of work available illustrating the significance of X-ray rocking curve measurements in micro-electronic applications. For the first time a high resolution (100-150µm) 2-dimensional technique called DARC (Digital Autcmated Rocking Curve) topography has been implemented. This method is an enhancement of the conventional double crystal diffractometer using a real time 2-dimensional X-ray detector.Several materials have been successfully examined using DARC topography. Same of these include: Si, GaAs, AlGaAs, InGaAs, HgMnTe, Al, Inconel, steels, etc. By choosing the appropriate Bragg reflection multi-layered micro-electronic structures have been analyzed nondestructively. Several epitaxial films, including HgCdTe and ZnCdTe, grown by molecular beam epitaxy, have also been characterized using iARC topography. The rocking curve half width maps can be translated to dislocation density maps with relative ease. This technique also allows the deconvolution of the micro-plastic lattice strain ccaponent from the total strain tensor.


2012 ◽  
Vol 476-478 ◽  
pp. 1305-1308
Author(s):  
Chun Feng Sun ◽  
Wei Guang Zhang

Pulse width modulation (PWM) is often one of the important power regulation method of ultrasonic power supply. The traditional PWM control circuit has the shortcomings of complex design structure, slow dynamic response and low reliability. An advanced PWM technique for choppers of ultrasonic power supply based on FPGA is proposed. Through open-loop operation, it regulates the output pulse width of ultrasonic power supply dynamically. The simulation result shows that the PWM control circuit based on FPGA can realize to adjust the width of PWM signal and power regulation conveniently.


Sign in / Sign up

Export Citation Format

Share Document