Unambiguous measurements and Trojan-horse attack in quantum cryptography

2019 ◽  
Vol 17 (1) ◽  
pp. 015203 ◽  
Author(s):  
S N Molotkov
2015 ◽  
Vol 15 (15&16) ◽  
pp. 1295-1306
Author(s):  
Zoe Amblard ◽  
Francois Arnault

The Ekert quantum key distribution protocol [1] uses pairs of entangled qubits and performs checks based on a Bell inequality to detect eavesdropping. The 3DEB protocol [2] uses instead pairs of entangled qutrits to achieve better noise resistance than the Ekert protocol. It performs checks based on a Bell inequality for qutrits named CHSH-3 and found in [3, 4]. In this paper, we present a new protocol, which also uses pairs of entangled qutrits, but gaining advantage of a Bell inequality which achieves better noise resistance than the one used in 3DEB. The latter inequality is called here hCHSH-3 and was discovered in [5]. For each party, the hCHSH-3 inequality involves four observables already used in CHSH-3 but also two products of observables which do not commute. We explain how the parties can measure the observables corresponding to these products and thus are able to check the violation of hCHSH-3. In the presence of noise, this violation guarantees the security against a local Trojan horse attack. We also designed a version of our protocol which is secure against individual attacks.


2019 ◽  
Vol 34 (34) ◽  
pp. 1950281 ◽  
Author(s):  
Chia-Wei Tsai ◽  
Chun-Wei Yang ◽  
Narn-Yih Lee

Classical users can share a secret key with a quantum user by using a semi-quantum key distribution (SQKD) protocol. Allowing two classical users to share a secret key is the objective of the mediated semi-quantum key distribution (MSQKD) protocol. However, the existing MSQKD protocols need a quantum user to assist two classical users in distributing the secret keys, and these protocols require that the classical users be equipped with a Trojan horse photon detector. This reduces the practicability of the MSQKD protocols. Therefore, in this study we propose a lightweight MSQKD, in which the two participants and third party are classical users. Due to the usage of the one-way transmission strategy, the proposed lightweight MSQKD protocol is free from quantum Trojan horse attack. The proposed MSQKD is more practical than the existing MSQKD protocols.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Shihan Sajeed ◽  
Carter Minshull ◽  
Nitin Jain ◽  
Vadim Makarov

2002 ◽  
Vol 2 (6) ◽  
pp. 434-442
Author(s):  
J. Larsson

Quantum Cryptography, or more accurately, Quantum Key Distribution (QKD) is based on using an unconditionally secure ``quantum channel'' to share a secret key among two users. A manufacturer of QKD devices could, intentionally or not, use a (semi-)classical channel instead of the quantum channel, which would remove the supposedly unconditional security. One example is the BB84 protocol, where the quantum channel can be implemented in polarization of single photons. Here, use of several photons instead of one to encode each bit of the key provides a similar but insecure system. For protocols based on violation of a Bell inequality (e.g., the Ekert protocol) the situation is somewhat different. While the possibility is mentioned by some authors, it is generally thought that an implementation of a (semi-)classical channel will differ significantly from that of a quantum channel. Here, a counterexample will be given using an identical physical setup as is used in photon-polarization Ekert QKD. Since the physical implementation is identical, a manufacturer may include this modification as a Trojan Horse in manufactured systems, to be activated at will by an eavesdropper. Thus, the old truth of cryptography still holds: you have to trust the manufacturer of your cryptographic device. Even when you do violate the Bell inequality.


2019 ◽  
Vol 34 (24) ◽  
pp. 1950196 ◽  
Author(s):  
Tao Zheng ◽  
Shibin Zhang ◽  
Xiang Gao ◽  
Yan Chang

Quantum private query (QPQ) is a cryptographic application that protects the privacy of both users and databases while querying the database secretly. In most existing QPQ protocols, the protection of user privacy can only be cheat-sensitive. Cheat-sensitive means that Bob will be found later with a certain probability if he tries to get the address queried by Alice. On the premise of cheat-sensitivity, although Alice can discover Bob’s malicious behavior after a query (transaction), the secret information of Alice was leaked in the completed query, which is likely to be a fatal blow to Alice. Or, to prevent Bob’s malicious behavior, Alice executes one or more additional queries to test Bob’s honesty. However, to bypass Alice’s honesty test, Bob can also provide several honest queries before performing dishonest queries. Therefore, cheat-sensitive should not be the ultimate goal of user privacy protection in QPQ. In this paper, we propose a practical QKD-based QPQ protocol with better user privacy protection than cheat-sensitivity based on order rearrangement of qubits. The proposed QPQ protocol can resist the Trojan horse attack even without wavelength filter and photon number splitter (PNS) equipped with auxiliary monitoring detectors.


2020 ◽  
Vol 101 (2) ◽  
Author(s):  
Zheng-Hong Li ◽  
Luojia Wang ◽  
Jingping Xu ◽  
Yaping Yang ◽  
M. Al-Amri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document