Harmonic stochastic resonance-enhanced signal detecting in NW small-world neural network

2010 ◽  
Vol 19 (11) ◽  
pp. 110515 ◽  
Author(s):  
Dao-Guang Wang ◽  
Xiao-Ming Liang ◽  
Jing Wang ◽  
Cheng-Fang Yang ◽  
Kai Liu ◽  
...  
2008 ◽  
Vol 22 (30) ◽  
pp. 5365-5373 ◽  
Author(s):  
RENHUAN YANG ◽  
AIGUO SONG

We study stochastic resonance (SR) in Hindmarsh–Rose (HR) neural network with small-world (SW) connections driven by external periodic stimulus, focusing on the dependence of properties of SR on the network structure parameters. It is found that, the SW neural network enhances SR compared with single neuron. By turning coupling strength c, two categories of SR were gained. With the connection-rewiring probability p increasing, the resonance curve becomes more and more sharp and the peak value increases gradually and then reaches saturation. The SW network enhances the SR peak value compared with regular network and widens resonance in ascending range compared with random network. When decreasing node degree k, the resonance range is enlarged, and the signal noise ratio (SNR) curve becomes a two peak one from a classic single peak SR curve, and then the stochastic resonance phenomenon almost disappears.


2021 ◽  
pp. 127387
Author(s):  
Xiaojie Liu ◽  
Lingling Duan ◽  
Fabing Duan ◽  
François Chapeau-Blondeau ◽  
Derek Abbott

2012 ◽  
Vol 562-564 ◽  
pp. 1012-1015
Author(s):  
S.X. Wang ◽  
Z.X. Li ◽  
D.X. Sun ◽  
X.X. Xie

In order to avoid the limitations of traditional mechanism modeling method, a neural network (NN) model of variable - pitch wind turbine is built by the NN modeling method based on field data. Then considering that from wind turbine’s startup to grid integration, the generator speed must be controlled to rise to the synchronous speed smoothly and precisely, a neural network model predictive control (NNMPC) strategy based on the small-world optimization algorithm (SWOA) is proposed. Simulation results show that the strategy can forecast the change of generator rotational speed based on the wind speed disturbance, making the controller act ahead to eliminate the impact of system delay. Furthermore, the system output can track the reference trajectory well, making sure that the system can connect the electricity grid steadily.


2018 ◽  
Vol 142 ◽  
pp. 96-103 ◽  
Author(s):  
Weihang Shao ◽  
Jamie Barras ◽  
Panagiotis Kosmas

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaohu Li ◽  
Feng Xu ◽  
Jinhua Zhang ◽  
Sunan Wang

Being difficult to attain the precise mathematical models, traditional control methods such as proportional integral (PI) and proportional integral differentiation (PID) cannot meet the demands for real time and robustness when applied in some nonlinear systems. The neural network controller is a good replacement to overcome these shortcomings. However, the performance of neural network controller is directly determined by neural network model. In this paper, a new neural network model is constructed with a structure topology between the regular and random connection modes based on complex network, which simulates the brain neural network as far as possible, to design a better neural network controller. Then, a new controller is designed under small-world neural network model and is investigated in both linear and nonlinear systems control. The simulation results show that the new controller basing on small-world network model can improve the control precision by 30% in the case of system with random disturbance. Besides the good performance of the new controller in tracking square wave signals, which is demonstrated by the experiment results of direct drive electro-hydraulic actuation position control system, it works well on anti-interference performance.


2014 ◽  
Vol 933 ◽  
pp. 384-389
Author(s):  
Xin Zhao ◽  
Shuang Xin Wang

Wind power short-term forcasting of BP neural network based on the small-world optimization is proposed. First, the initial data collected from wind farm are revised, and the unreasonable data are found out and revised. Second, the small-world optimization BP neural network model is proposed, and the model is used on the prediction method of wind speed and wind direction, and the prediction method of power. Finally, by simulation analysis, the NMAE and NRMSE of the power method are smaller than those of the wind speed and wind direction method when the wind power data of one hour later are predicted. When the power method are used to forecast the data one hour later, NMAE is 5.39% and NRMSE is 6.98%.


Sign in / Sign up

Export Citation Format

Share Document