Stimulated Brillouin scattering-induced phase noise in an interferometric fiber sensing system

2012 ◽  
Vol 21 (3) ◽  
pp. 034212 ◽  
Author(s):  
Wei Chen ◽  
Zhou Meng ◽  
Hui-Juan Zhou ◽  
Hong Luo
2019 ◽  
Vol 9 (10) ◽  
pp. 2077
Author(s):  
Feng Fan ◽  
Wenwu Zhu ◽  
Jiabin Wang ◽  
Jingjing Hu ◽  
Yiying Gu ◽  
...  

A tunable optoelectronic oscillator (TOEO) with coupled dual-loop (CDL) based on stimulated Brillouin scattering (SBS) is proposed. In our scheme, the CDL is constructed by cascading a dual-output Mach–Zehnder intensity modulator (DOMZM) and a single output Mach–Zehnder intensity modulator (MZM). One optical output of the DOMZM is directly injected to the MZM, and the other optical output of the DOMZM is transformed into microwave signals to modulate the MZM. The narrow gain spectrum of SBS is used to select the oscillation frequency and realize frequency tunability. By joining the CDL, we can not only increase side mode suppression ratio (SMSR) and decrease phase noise, but also improve stability of the TOEO. Experimental results show that microwave signals from 2 GHz to 18 GHz with the SMSR as high as 60 dB and the phase noise as low as −95 dBc/Hz at 10 kHz frequency offset are achieved. Furthermore, the frequency drift is less than 0.3 ppm and the power drift is lower than 0.2 dB at 10 GHz within 30 min in lab condition.


2021 ◽  
Vol 11 (1) ◽  
pp. 69-90
Author(s):  
Yongkang Dong

AbstractThis paper reviews the recent advances on the high-performance distributed Brillouin optical fiber sensing, which include the conventional distributed Brillouin optical fiber sensing based on backward stimulated Brillouin scattering and two other novel distributed sensing mechanisms based on Brillouin dynamic grating and forward stimulated Brillouin scattering, respectively. As for the conventional distributed Brillouin optical fiber sensing, the spatial resolution has been improved from meter to centimeter in the time-domain scheme and to millimeter in the correlation-domain scheme, respectively; the measurement time has been reduced from minute to millisecond and even to microsecond; the sensing range has reached more than 100 km. Brillouin dynamic grating can be used to measure the birefringence of a polarization-maintaining fiber, which has been explored to realize distributed measurement of temperature, strain, salinity, static pressure, and transverse pressure. More recently, forward stimulated Brillouin scattering has gained considerable interest because of its capacity to detect mechanical features of materials surrounding the optical fiber, and remarkable works using ingenious schemes have managed to realize distributed measurement, which opens a brand-new way to achieve position-resolved substance identification.


Sign in / Sign up

Export Citation Format

Share Document