Visible light absorption of (Fe, C/N) co-doped NaTaO${}_{3}$: DFT+ U *

2017 ◽  
Vol 26 (8) ◽  
pp. 087102 ◽  
Author(s):  
Peng-Li Tian ◽  
Zhen-Yi Jiang ◽  
Xiao-Dong Zhang ◽  
Bo Zhou ◽  
Ya-Ru Dong ◽  
...  
2011 ◽  
Vol 356-360 ◽  
pp. 853-856 ◽  
Author(s):  
Qiao Zhen Yu ◽  
Xiang Jun Jin ◽  
Shao Yang Li ◽  
Lei Wang ◽  
Kun Long Liang

To obtain a TiO2photocatalyst with high photocatalytic efficiency under visible irradiation and good reusability, the Fe3+and N co-doped TiO2micro/nano fiber films were fabricated by electrospinning and calcinations. The morphologies and structures of the resulting samples were analyzed by scanning electron microscopy (SEM), x-ray diffraction and x-ray energy dispersion spectroscopy (EDS). The absorbance and chemical oxygen demand (COD) were characterized respectively by UV–visible spectrophotometer and COD Rapid Tester. The results show that the Fe3+and N co-doped TiO2micro/nano fiber had a multi-porous structure with an average diameter of about 45 to 506 nm. The crystalinity degrees, visible light absorption of these films were affected by the dosage of Fe3+and N co-doping (DFN). Moreover, these films exhibited high photocatalytic activity for the degradation of dye waste water under sunlight and it was related to DFN. As DFN was 0.5 %, it has highest crystalinity degree, largest visible light absorption and highest photocatalytic efficiency on dye waste water. The decolor rate of the dye waste water was as high as 67.6 % and its COD decreased from 2800±200 to 236.40 ± 15.61, when the photocatalytic time was only 3 h.


2021 ◽  
Author(s):  
Pinnan Li ◽  
Mingya Wang ◽  
Shushu Huang ◽  
Yiguo Su

A phosphorus and fluorine co-doped carbon nitride photocatalyst was constructed to modulate the band gap structure and visible light response ability of g-C3N4 as well as the photocatalytic H2 evolution activity.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
S. Modanlu ◽  
A. Shafiekhani

Abstract Pure and co-doped Titania thin films were prepared on aluminum substrates through the sol-gel method. The co-doped sample showed higher photocatalytic activity on benzene degradation compared to pure TiO2 under visible light illumination. XRD results showed the anatase phase for both TiO2 and co-doped TiO2 lattices with an average crystalline size of 12.9 and 10.4 nm, respectively. According to the UV-visible absorption spectra results, co-doped Titania showed higher visible light absorption compared to pure Titania. The synergistic effect of dopants caused a redshift to visible light absorption and also the lifetime of the photogenerated electron-hole were increased by induced electron levels in Titania lattice. The novelty of this study is the reactor’s specific design. We employed Al mesh as thin film substrate for 3 main reasons, first, the large surface area of the Al mesh causes to increase specific surface area of the photocatalysts, also it is a formable substrate which can be engineered geometrically to decrease the shadow spots so the thin films will receive the highest light irradiation. Also, the Al mesh flexibility facilitates the procedure of reactor design to reach a minimum pressure drop of airflow while it is installed in the air conditioners or HVAC systems.


Author(s):  
David Maria Tobaldi ◽  
Luc Lajaunie ◽  
ana caetano ◽  
nejc rozman ◽  
Maria Paula Seabra ◽  
...  

<div>Titanium dioxide is by far the most utilised semiconductor material for photocatalytic applications. Still, it is transparent to visible-light. Recently, it has been proved that a type-II band alignment for the rutile−anatase mixture would improve its visible-light absorption.</div><div>In this research paper we thoroughly characterised the real crystalline and amorphous phases of synthesised titanias – thermally treated at different temperatures to get distinct ratios of anatase-rutile-amorphous fraction – as well as that of three commercially available photocatalytic nano-TiO2. </div><div>The structural characterisation was done via advanced X-ray diffraction method, namely the Rietveld-RIR method, to attain a full quantitative phase analysis of the specimens. The microstructure was also investigated via an advanced X-ray method, the whole powder pattern modelling. These methods were validated combining advanced aberration-corrected scanning transmission microscopy and high-resolution electron energy-loss spectroscopy. The photocatalytic activity was assessed in the liquid- and gas-solid phase (employing rhodamine B and 4-chlorophenol, and isopropanol, respectively, as the organic substances to degrade) using a light source irradiating exclusively in the visible-range.</div><div>Optical spectroscopy showed that even a small fraction of rutile (2 wt%) is able to shift to lower energies the apparent optical band gap of an anatase-rutile mixed phase. But is this enough to attain a real photocatalytic activity promoted by merely visible-light?</div><div>We tried to give a reply to that question.</div><div>Photocatalytic activity results in the liquid-solid phase showed that a high surface hydroxylation led to specimen with superior visible light-induced catalytic activity (i.e. dye and ligand-to-metal charge transfer complexes sensitisation effects). That is: not photocatalysis <i>sensu-strictu</i>.</div><div>On the other hand, the gas-solid phase results showed that a higher amount of the rutile fraction (around 10 wt%), together with less recombination of the charge carriers, were more effective for an actual photocatalytic oxidation of isopropanol.</div>


2019 ◽  
Vol 2 (10) ◽  
pp. 7518-7526 ◽  
Author(s):  
Hanggara Sudrajat ◽  
Mitsunori Kitta ◽  
Nobuyuki Ichikuni ◽  
Hiroshi Onishi

Sign in / Sign up

Export Citation Format

Share Document