Embracing the era of neuromorphic computing

2021 ◽  
Vol 42 (1) ◽  
pp. 010301
Author(s):  
Yanghao Wang ◽  
Yuchao Yang ◽  
Yue Hao ◽  
Ru Huang
2013 ◽  
Author(s):  
Clare Thiem ◽  
Bryant Wysocki ◽  
Morgan Bishop ◽  
Nathan McDonald ◽  
James Bohl

2014 ◽  
Author(s):  
Bryant Wysocki ◽  
Nathan McDonald ◽  
Clare Thiem ◽  
Thomas Renz ◽  
James Bohl

ACS Nano ◽  
2020 ◽  
Author(s):  
Ya-Xin Hou ◽  
Yi Li ◽  
Zhi-Cheng Zhang ◽  
Jia-Qiang Li ◽  
De-Han Qi ◽  
...  

2021 ◽  
Author(s):  
Tao Zeng ◽  
Zhi Yang ◽  
Jiabing Liang ◽  
Ya Lin ◽  
Yankun Cheng ◽  
...  

Memristive devices are widely recognized as promising hardware implementations of neuromorphic computing. Herein, a flexible and transparent memristive synapse based on polyvinylpyrrolidone (PVP)/N-doped carbon quantum dot (NCQD) nanocomposites through regulating...


2021 ◽  
pp. 100393
Author(s):  
Bai Sun ◽  
Tao Guo ◽  
Guangdong Zhou ◽  
Shubham Ranjan ◽  
Yixuan Jiao ◽  
...  

2021 ◽  
pp. 2103672
Author(s):  
Jing Zhou ◽  
Tieyang Zhao ◽  
Xinyu Shu ◽  
Liang Liu ◽  
Weinan Lin ◽  
...  

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Batyrbek Alimkhanuly ◽  
Joon Sohn ◽  
Ik-Joon Chang ◽  
Seunghyun Lee

AbstractRecent studies on neural network quantization have demonstrated a beneficial compromise between accuracy, computation rate, and architecture size. Implementing a 3D Vertical RRAM (VRRAM) array accompanied by device scaling may further improve such networks’ density and energy consumption. Individual device design, optimized interconnects, and careful material selection are key factors determining the overall computation performance. In this work, the impact of replacing conventional devices with microfabricated, graphene-based VRRAM is investigated for circuit and algorithmic levels. By exploiting a sub-nm thin 2D material, the VRRAM array demonstrates an improved read/write margins and read inaccuracy level for the weighted-sum procedure. Moreover, energy consumption is significantly reduced in array programming operations. Finally, an XNOR logic-inspired architecture designed to integrate 1-bit ternary precision synaptic weights into graphene-based VRRAM is introduced. Simulations on VRRAM with metal and graphene word-planes demonstrate 83.5 and 94.1% recognition accuracy, respectively, denoting the importance of material innovation in neuromorphic computing.


2021 ◽  
pp. 2006469
Author(s):  
Hongyu Bian ◽  
Yi Yiing Goh ◽  
Yuxia Liu ◽  
Haifeng Ling ◽  
Linghai Xie ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jonathan K. George ◽  
Cesare Soci ◽  
Mario Miscuglio ◽  
Volker J. Sorger

AbstractMirror symmetry is an abundant feature in both nature and technology. Its successful detection is critical for perception procedures based on visual stimuli and requires organizational processes. Neuromorphic computing, utilizing brain-mimicked networks, could be a technology-solution providing such perceptual organization functionality, and furthermore has made tremendous advances in computing efficiency by applying a spiking model of information. Spiking models inherently maximize efficiency in noisy environments by placing the energy of the signal in a minimal time. However, many neuromorphic computing models ignore time delay between nodes, choosing instead to approximate connections between neurons as instantaneous weighting. With this assumption, many complex time interactions of spiking neurons are lost. Here, we show that the coincidence detection property of a spiking-based feed-forward neural network enables mirror symmetry. Testing this algorithm exemplary on geospatial satellite image data sets reveals how symmetry density enables automated recognition of man-made structures over vegetation. We further demonstrate that the addition of noise improves feature detectability of an image through coincidence point generation. The ability to obtain mirror symmetry from spiking neural networks can be a powerful tool for applications in image-based rendering, computer graphics, robotics, photo interpretation, image retrieval, video analysis and annotation, multi-media and may help accelerating the brain-machine interconnection. More importantly it enables a technology pathway in bridging the gap between the low-level incoming sensor stimuli and high-level interpretation of these inputs as recognized objects and scenes in the world.


2021 ◽  
Vol 13 (7) ◽  
pp. 8672-8681
Author(s):  
Qian Yang ◽  
Huihuang Yang ◽  
Dongxu Lv ◽  
Rengjian Yu ◽  
Enlong Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document