Motor adaptation via distributional learning

Author(s):  
Brian Mitchell ◽  
Michelle Marneweck ◽  
Scott Grafton ◽  
Linda Petzold
2012 ◽  
Author(s):  
Megan M. Kittleson ◽  
Jessamyn Schertz ◽  
Randy Diehl ◽  
Andrew J. Lotto

1990 ◽  
Vol 71 (1) ◽  
pp. 275-280
Author(s):  
Linda I. Shuster

The two experiments described in this paper were designed to investigate further the phenomenon called motor-motor adaptation. In the first investigation, subjects were adapted while noise was presented through headphones, which prevented them from hearing themselves. In the second experiment, subjects repeated an isolated vowel, as well as a consonant-vowel syllable which contained a stop consonant. The findings indicated that motor-motor adaptation is not a product of perceptual adaptation, and it is not a result of subjects producing longer voice onset times after adaptation to a voiced consonant rather than shorter voice onset times after adaptation to a voiceless consonant.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel H. Blustein ◽  
Ahmed W. Shehata ◽  
Erin S. Kuylenstierna ◽  
Kevin B. Englehart ◽  
Jonathon W. Sensinger

AbstractWhen a person makes a movement, a motor error is typically observed that then drives motor planning corrections on subsequent movements. This error correction, quantified as a trial-by-trial adaptation rate, provides insight into how the nervous system is operating, particularly regarding how much confidence a person places in different sources of information such as sensory feedback or motor command reproducibility. Traditional analysis has required carefully controlled laboratory conditions such as the application of perturbations or error clamping, limiting the usefulness of motor analysis in clinical and everyday environments. Here we focus on error adaptation during unperturbed and naturalistic movements. With increasing motor noise, we show that the conventional estimation of trial-by-trial adaptation increases, a counterintuitive finding that is the consequence of systematic bias in the estimate due to noise masking the learner’s intention. We present an analytic solution relying on stochastic signal processing to reduce this effect of noise, producing an estimate of motor adaptation with reduced bias. The result is an improved estimate of trial-by-trial adaptation in a human learner compared to conventional methods. We demonstrate the effectiveness of the new method in analyzing simulated and empirical movement data under different noise conditions.


2013 ◽  
Vol 110 (4) ◽  
pp. 984-998 ◽  
Author(s):  
Wilsaan M. Joiner ◽  
Jordan B. Brayanov ◽  
Maurice A. Smith

The way that a motor adaptation is trained, for example, the manner in which it is introduced or the duration of the training period, can influence its internal representation. However, recent studies examining the gradual versus abrupt introduction of a novel environment have produced conflicting results. Here we examined how these effects determine the effector specificity of motor adaptation during visually guided reaching. After adaptation to velocity-dependent dynamics in the right arm, we estimated the amount of adaptation transferred to the left arm, using error-clamp measurement trials to directly measure changes in learned dynamics. We found that a small but significant amount of generalization to the untrained arm occurs under three different training schedules: a short-duration (15 trials) abrupt presentation, a long-duration (160 trials) abrupt presentation, and a long-duration gradual presentation of the novel dynamic environment. Remarkably, we found essentially no difference between the amount of interlimb generalization when comparing these schedules, with 9–12% transfer of the trained adaptation for all three. However, the duration of training had a pronounced effect on the stability of the interlimb transfer: The transfer elicited from short-duration training decayed rapidly, whereas the transfer from both long-duration training schedules was considerably more persistent (<50% vs. >90% retention over the first 20 trials). These results indicate that the amount of interlimb transfer is similar for gradual versus abrupt training and that interlimb transfer of learned dynamics can occur after even a brief training period but longer training is required for an enduring effect.


Author(s):  
Koenraad Vandevoorde ◽  
Jean-Jacques Orban de Xivry

The ability to adjust movements to changes in the environment declines with aging. This age-related decline is caused by the decline of explicit adjustments. However, implicit adaptation remains intact and might even be increased with aging. Since proprioceptive information has been linked to implicit adaptation, it might well be that an age-related decline in proprioceptive acuity might be linked to the performance of older adults in implicit adaptation tasks. Indeed, age-related proprioceptive deficits could lead to altered sensory integration with an increased weighting of the visual sensory-prediction error. Another possibility is that reduced proprioceptive acuity results in an increased reliance on predicted sensory consequences of the movement. Both these explanations led to our preregistered hypothesis: we expected a relation between the decline of proprioception and the amount of implicit adaptation across ages. However, we failed to support this hypothesis. Our results question the existence of reliability-based integration of visual and proprioceptive signals during motor adaptation.


Sign in / Sign up

Export Citation Format

Share Document