EEG data augmentation: towards class imbalance problem in sleep staging tasks

2020 ◽  
Vol 17 (5) ◽  
pp. 056017
Author(s):  
Jiahao Fan ◽  
Chenglu Sun ◽  
Chen Chen ◽  
Xinyu Jiang ◽  
Xiangyu Liu ◽  
...  
Author(s):  
Changxu Dong ◽  
Yanna Zhao ◽  
Gaobo Zhang ◽  
Mingrui Xue ◽  
Dengyu Chu ◽  
...  

Epilepsy is a chronic brain disease resulted from the central nervous system lesion, which leads to repeated seizure occurs for the patients. Automatic seizure detection with Electroencephalogram (EEG) has witnessed great progress. However, existing methods paid little attention to the topological relationships of different EEG electrodes. Latest neuroscience researches have demonstrated the connectivity between different brain regions. Besides, class-imbalance is a common problem in EEG based seizure detection. The duration of epileptic EEG signals is much shorter than that of normal signals. In order to deal with the above mentioned two challenges, we propose to model the multi-channel EEG data using the Attention-based Graph ResNet (AGRN). In particular, each channel of the EEG signal represents a node of the graph and the inter-channel relations are modeled via the adjacency matrix in the graph. The loss function of the ARGN model is re-designed using focal loss to cope with the class-imbalance problem. The proposed ARGN with focal model could learn discriminative features from the raw EEG data. Experiments are carried out on the CHB-MIT dataset. The proposed model achieves an average accuracy of 98.70%, a sensitivity of 97.94%, a specificity of 98.66% and a precision of 98.62%. The Area Under the ROC Curve (AUC) is 98.69%.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 115528-115539 ◽  
Author(s):  
Sitara Afzal ◽  
Muazzam Maqsood ◽  
Faria Nazir ◽  
Umair Khan ◽  
Farhan Aadil ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3183 ◽  
Author(s):  
Zia Khan ◽  
Norashikin Yahya ◽  
Khaled Alsaih ◽  
Syed Saad Azhar Ali ◽  
Fabrice Meriaudeau

In this paper, we present an evaluation of four encoder–decoder CNNs in the segmentation of the prostate gland in T2W magnetic resonance imaging (MRI) image. The four selected CNNs are FCN, SegNet, U-Net, and DeepLabV3+, which was originally proposed for the segmentation of road scene, biomedical, and natural images. Segmentation of prostate in T2W MRI images is an important step in the automatic diagnosis of prostate cancer to enable better lesion detection and staging of prostate cancer. Therefore, many research efforts have been conducted to improve the segmentation of the prostate gland in MRI images. The main challenges of prostate gland segmentation are blurry prostate boundary and variability in prostate anatomical structure. In this work, we investigated the performance of encoder–decoder CNNs for segmentation of prostate gland in T2W MRI. Image pre-processing techniques including image resizing, center-cropping and intensity normalization are applied to address the issues of inter-patient and inter-scanner variability as well as the issue of dominating background pixels over prostate pixels. In addition, to enrich the network with more data, to increase data variation, and to improve its accuracy, patch extraction and data augmentation are applied prior to training the networks. Furthermore, class weight balancing is used to avoid having biased networks since the number of background pixels is much higher than the prostate pixels. The class imbalance problem is solved by utilizing weighted cross-entropy loss function during the training of the CNN model. The performance of the CNNs is evaluated in terms of the Dice similarity coefficient (DSC) and our experimental results show that patch-wise DeepLabV3+ gives the best performance with DSC equal to 92.8 % . This value is the highest DSC score compared to the FCN, SegNet, and U-Net that also competed the recently published state-of-the-art method of prostate segmentation.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4519 ◽  
Author(s):  
Ying Liang ◽  
Ke Xu ◽  
Peng Zhou

The surface quality of aluminum ingot is crucial for subsequent products, so it is necessary to adaptively detect different types of defects in milled aluminum ingots surfaces. In order to quickly apply the calculations to a real production line, a novel two-stage detection approach is proposed. Firstly, we proposed a novel mask gradient response-based threshold segmentation (MGRTS) in which the mask gradient response is the gradient map after the strong gradient has been eliminated by the binary mask, so that the various defects can be effectively extracted from the mask gradient response map by iterative threshold segmentation. In the region of interest (ROI) extraction, we combine the MGRTS and the Difference of Gaussian (DoG) to effectively improve the detection rate. In the aspect of the defect classification, we train the inception-v3 network with a data augmentation technology and the focal loss in order to overcome the class imbalance problem and improve the classification accuracy. The comparative study shows that the proposed method is efficient and robust for detecting various defects on an aluminum ingot surface with complex milling grain. In addition, it has been applied to the actual production line of an aluminum ingot milling machine, which satisfies the requirement of accuracy and real time very well.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1906
Author(s):  
Jia-Zheng Jian ◽  
Tzong-Rong Ger ◽  
Han-Hua Lai ◽  
Chi-Ming Ku ◽  
Chiung-An Chen ◽  
...  

Diverse computer-aided diagnosis systems based on convolutional neural networks were applied to automate the detection of myocardial infarction (MI) found in electrocardiogram (ECG) for early diagnosis and prevention. However, issues, particularly overfitting and underfitting, were not being taken into account. In other words, it is unclear whether the network structure is too simple or complex. Toward this end, the proposed models were developed by starting with the simplest structure: a multi-lead features-concatenate narrow network (N-Net) in which only two convolutional layers were included in each lead branch. Additionally, multi-scale features-concatenate networks (MSN-Net) were also implemented where larger features were being extracted through pooling the signals. The best structure was obtained via tuning both the number of filters in the convolutional layers and the number of inputting signal scales. As a result, the N-Net reached a 95.76% accuracy in the MI detection task, whereas the MSN-Net reached an accuracy of 61.82% in the MI locating task. Both networks give a higher average accuracy and a significant difference of p < 0.001 evaluated by the U test compared with the state-of-the-art. The models are also smaller in size thus are suitable to fit in wearable devices for offline monitoring. In conclusion, testing throughout the simple and complex network structure is indispensable. However, the way of dealing with the class imbalance problem and the quality of the extracted features are yet to be discussed.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2803
Author(s):  
Rabeea Jaffari ◽  
Manzoor Ahmed Hashmani ◽  
Constantino Carlos Reyes-Aldasoro

The segmentation of power lines (PLs) from aerial images is a crucial task for the safe navigation of unmanned aerial vehicles (UAVs) operating at low altitudes. Despite the advances in deep learning-based approaches for PL segmentation, these models are still vulnerable to the class imbalance present in the data. The PLs occupy only a minimal portion (1–5%) of the aerial images as compared to the background region (95–99%). Generally, this class imbalance problem is addressed via the use of PL-specific detectors in conjunction with the popular class balanced cross entropy (BBCE) loss function. However, these PL-specific detectors do not work outside their application areas and a BBCE loss requires hyperparameter tuning for class-wise weights, which is not trivial. Moreover, the BBCE loss results in low dice scores and precision values and thus, fails to achieve an optimal trade-off between dice scores, model accuracy, and precision–recall values. In this work, we propose a generalized focal loss function based on the Matthews correlation coefficient (MCC) or the Phi coefficient to address the class imbalance problem in PL segmentation while utilizing a generic deep segmentation architecture. We evaluate our loss function by improving the vanilla U-Net model with an additional convolutional auxiliary classifier head (ACU-Net) for better learning and faster model convergence. The evaluation of two PL datasets, namely the Mendeley Power Line Dataset and the Power Line Dataset of Urban Scenes (PLDU), where PLs occupy around 1% and 2% of the aerial images area, respectively, reveal that our proposed loss function outperforms the popular BBCE loss by 16% in PL dice scores on both the datasets, 19% in precision and false detection rate (FDR) values for the Mendeley PL dataset and 15% in precision and FDR values for the PLDU with a minor degradation in the accuracy and recall values. Moreover, our proposed ACU-Net outperforms the baseline vanilla U-Net for the characteristic evaluation parameters in the range of 1–10% for both the PL datasets. Thus, our proposed loss function with ACU-Net achieves an optimal trade-off for the characteristic evaluation parameters without any bells and whistles. Our code is available at Github.


Author(s):  
Sayan Surya Shaw ◽  
Shameem Ahmed ◽  
Samir Malakar ◽  
Laura Garcia-Hernandez ◽  
Ajith Abraham ◽  
...  

AbstractMany real-life datasets are imbalanced in nature, which implies that the number of samples present in one class (minority class) is exceptionally less compared to the number of samples found in the other class (majority class). Hence, if we directly fit these datasets to a standard classifier for training, then it often overlooks the minority class samples while estimating class separating hyperplane(s) and as a result of that it missclassifies the minority class samples. To solve this problem, over the years, many researchers have followed different approaches. However the selection of the true representative samples from the majority class is still considered as an open research problem. A better solution for this problem would be helpful in many applications like fraud detection, disease prediction and text classification. Also, the recent studies show that it needs not only analyzing disproportion between classes, but also other difficulties rooted in the nature of different data and thereby it needs more flexible, self-adaptable, computationally efficient and real-time method for selection of majority class samples without loosing much of important data from it. Keeping this fact in mind, we have proposed a hybrid model constituting Particle Swarm Optimization (PSO), a popular swarm intelligence-based meta-heuristic algorithm, and Ring Theory (RT)-based Evolutionary Algorithm (RTEA), a recently proposed physics-based meta-heuristic algorithm. We have named the algorithm as RT-based PSO or in short RTPSO. RTPSO can select the most representative samples from the majority class as it takes advantage of the efficient exploration and the exploitation phases of its parent algorithms for strengthening the search process. We have used AdaBoost classifier to observe the final classification results of our model. The effectiveness of our proposed method has been evaluated on 15 standard real-life datasets having low to extreme imbalance ratio. The performance of the RTPSO has been compared with PSO, RTEA and other standard undersampling methods. The obtained results demonstrate the superiority of RTPSO over state-of-the-art class imbalance problem-solvers considered here for comparison. The source code of this work is available in https://github.com/Sayansurya/RTPSO_Class_imbalance.


Sign in / Sign up

Export Citation Format

Share Document