Effects of high-level pulse train stimulation on retinal function

2009 ◽  
Vol 6 (3) ◽  
pp. 035005 ◽  
Author(s):  
Ethan D Cohen
2000 ◽  
Vol 149 (1-2) ◽  
pp. 129-137 ◽  
Author(s):  
A.J. Matsuoka ◽  
P.J. Abbas ◽  
J.T. Rubinstein ◽  
C.A. Miller

Spine ◽  
2008 ◽  
Vol 33 (12) ◽  
pp. E378-E385 ◽  
Author(s):  
Miriam L. Donohue ◽  
Catherine Murtagh-Schaffer ◽  
John Basta ◽  
Ross R. Moquin ◽  
Asif Bashir ◽  
...  

1994 ◽  
Vol 71 (6) ◽  
pp. 2061-2073 ◽  
Author(s):  
T. Inoue ◽  
S. H. Chandler ◽  
L. J. Goldberg

1. We have examined the effects of iontophoretic application of antagonists to excitatory amino acid (EAA) receptors, as well as glycine and gamma-aminobutyric acid (GABA), on rhythmically active (RA) brain stem neurons during cortically induced masticatory activity (RMA) in the anesthetized guinea pig. Ten of these neurons were antidromically activated at latencies of 0.3–0.9 ms by stimulation of the trigeminal motor nucleus (MoV). 2. RA neurons were divided into closer and opener type according to the phase of activation during RMA. Iontophoretic application of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a specific non-N-methyl-D-aspartate (NMDA) receptor antagonist, suppressed discharge of both closer and opener type RA neurons during RMA. In contrast, iontophoretic application of 3-((1)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP), a specific NMDA receptor antagonist, was not effective in suppressing discharge of most opener type RA neurons but did reduce activity of closer type RA neurons. 3. Spike discharge of most RA neurons was time locked to each cortical stimulus during RMA. Some of the RA neurons were activated at a short latency to short pulse train stimulation of the cortex in the absence of RMA. In most cases CNQX reduced such time-locked responses during RMA and greatly reduced discharge evoked by short pulse stimulation of the cortex in all cases. In contrast, CPP was not as effective in suppressing either the time-locked responses during RMA or the discharge evoked by short pulse train stimulation of the cortex. 4. D,L-Homocysteic acid (HCA) application produced low level maintained discharge in RA neurons before RMA induction. When RMA was evoked in combination with HCA, rhythmical burst discharges with distinct interburst periods during the opening phase of RMA were observed in most closer type RA neurons. In contrast, during RMA in combination with HCA application, opener type RA neurons showed burst discharges that were modulated during the RMA cycle but lacked distinct interburst periods during the closer phase of the cycle. 5. During application of strychnine (STR), a glycine antagonist, discharge of closer type RA neurons increased in the opener phase of RMA during continuous HCA application. In contrast, bicuculline methiodide (BIC), a GABA antagonist, did not increase unit discharge of closer type RA neurons in the opener phase of RMA. 6. It is concluded that closer type RA neurons receive, alternatively, EAA-mediated excitatory and glycine-mediated inhibitory masticatory synaptic drive signals during RMA.(ABSTRACT TRUNCATED AT 400 WORDS)


2017 ◽  
Vol 128 (9) ◽  
pp. e283
Author(s):  
Laura López Viñas ◽  
Lidia Cabañes Martínez ◽  
M. del Mar Moreno ◽  
Carlos Valera ◽  
Gema De Blas ◽  
...  

2014 ◽  
Vol 20 (6) ◽  
pp. 675-691 ◽  
Author(s):  
Blair Calancie ◽  
Miriam L. Donohue ◽  
Colin B. Harris ◽  
Gregory W. Canute ◽  
Amit Singla ◽  
...  

Object Reports of the accuracy of existing neuromonitoring methods for detecting or preventing medial malpositioning of thoracic pedicle screws have varied widely in their claimed effectiveness. The object of this study was to develop, test, and validate a novel neuromonitoring method for preventing medial malpositioning of pedicle screws in the thoracic spine during surgery. Methods This is a prospective, blinded and randomized study using a novel combination of input (4-pulse stimulus trains delivered within the pedicle track) and output (evoked electromyography from leg muscles) to detect pedicle track trajectories that—once implanted with a screw—would cause that screw to breach the pedicle's medial wall and encroach upon the spinal canal. For comparison, the authors also used screw stimulation as an input and evoked electromyogram from intercostal and abdominal muscles as output measures. Intraoperative electrophysiological findings were compared with postoperative CT scans by multiple reviewers blinded to patient identity or intraoperative findings. Results Data were collected from 71 patients, in whom 802 screws were implanted between the T-1 and L-1 vertebral levels. A total of 32 screws ended up with screw threads encroaching on the spinal canal by at least 2 mm. Pulse-train stimulation within the pedicle track using a ball-tipped probe and electromyography from lower limb muscles correctly predicted all 32 (100%) of these medially malpositioned screws. The combination of pedicle track stimulation and electromyogram response from leg muscles proved to be far more effective in predicting these medially malpositioned screws than was direct screw stimulation and any of the target muscles (intercostal, abdominal, or lower limb muscles) we monitored. Based on receiver operating characteristic analysis, the combination of 10-mA (lower alarm) and 15-mA stimulation intensities proved most effective for detection of pedicle tracks that ultimately gave rise to medially malpositioned screws. Additional results pertaining to the impact of feedback of these test results on surgical decision making are provided in the companion report. Conclusions This novel neuromonitoring approach accurately predicts medially malpositioned thoracic screws. The approach could be readily implemented within any surgical program that is already using contemporary neuromonitoring methods that include transcranial stimulation for monitoring motor evoked potentials.


1994 ◽  
Vol 266 (5) ◽  
pp. H2007-H2017 ◽  
Author(s):  
Y. I. Zilberter ◽  
C. F. Starmer ◽  
A. O. Grant

In voltage-clamp studies of atrial myocytes exposed to disopyramide or quinidine, pulse-train stimulation revealed use-dependent block that increased with increased pulse amplitude. Use-dependent block also became negligible at hyperpolarized holding potentials (< -150 mV), consistent with either rapid unbinding at the holding potential or trapping of the drug in a drug-complexed rest conformation followed by rapid unbinding during the next channel opening event. To explore the unbinding properties of hypothetically different rest-blocked conformations, we exposed cells to a postdepolarization "conditioning" potential after channels had become fully inactivated so as to vary the transition to different hypothetical rest-blocked channels. Pulse-train stimulation from -130 to -30 mV generated only a small amount of use-dependent block. Inserting a 120-ms subthreshold (e.g., -100 mV) postdepolarization conditioning potential before return to -130 mV increased use-dependent block. The fraction of steady-state block exhibited a bell-shaped dependence on the conditioning potential. These results are consistent with the existence of a mixture of rest-blocked channel conformations, each having direct access to the blocked-inactivated state. These intermediate rest conformations display radically different drug unbinding rates.


Sign in / Sign up

Export Citation Format

Share Document