scholarly journals Inhomogeneous asymmetric exclusion processes between two reservoirs: large deviations for the local empirical observables in the mean-field approximation

2021 ◽  
Vol 2021 (12) ◽  
pp. 123205
Author(s):  
Cécile Monthus

Abstract For a given inhomogeneous exclusion processes on N sites between two reservoirs, the trajectories probabilities allow to identify the relevant local empirical observables and to obtain the corresponding rate function at level 2.5. In order to close the hierarchy of the empirical dynamics that appear in the stationarity constraints, we consider the simplest approximation, namely the mean-field approximation for the empirical density of two consecutive sites, in direct correspondence with the previously studied mean-field approximation for the steady state. For a given inhomogeneous totally asymmetric model, this mean-field approximation yields the large deviations for the joint distribution of the empirical density profile and of the empirical current around the mean-field steady state; the further explicit contraction over the current allows to obtain the large deviations of the empirical density profile alone. For a given inhomogeneous asymmetric model, the local empirical observables also involve the empirical activities of the links and of the reservoirs; the further explicit contraction over these activities yields the large deviations for the joint distribution of the empirical density profile and of the empirical current. The consequences for the large deviations properties of time-additive space-local observables are also discussed in both cases.

Fractals ◽  
1996 ◽  
Vol 04 (02) ◽  
pp. 113-122 ◽  
Author(s):  
G. CAMELO-NETO ◽  
S. COUTINHO

The steady state properties of the mean density population of infected cells in a viral spread is simulated by a general forest like cellular automaton model with two distinct populations of cells (permissive and resistant ones) and studied in the framework of the mean field approximation. Stochastic dynamical ingredients are introduced into this model to mimic cells regeneration (with probability p) and to consider infection processes by other means than contiguity (with probability f). Simulations are carried out on a L×L square lattice taking into consideration the eighth first neighbors. The mean density population of infected cells (Di) is measured as a function of the regeneration probability p, and analyzed for small values of the ratio f/p and for distinct degrees of cell resistance. The results obtained by a mean field like approach recovers the simulations results. The role of the resistant parameter R (R≥2) on the steady state properties, is investigated and discussed in comparison with the R=1 monocell case which corresponds to the self organized critical forest model. The fractal dimension of the dead cells ulcers contours was also estimated and analyzed as a function of the model parameters.


1973 ◽  
Vol 26 (5) ◽  
pp. 617 ◽  
Author(s):  
R Van der Borght ◽  
JO Murphy

The combined effect of an imposed rotation and magnetic field on convective transfer in a horizontal Boussinesq layer of fluid heated from below is studied in the mean field approximation. The basic equations are derived by a variational technique and their solutions are then found over a wide range of conditions, in the case of free boundaries, by numerical and analytic techniques, in particular by asymptotic and perturbation methods. The results obtained by the different techniques are shown to be in excellent agreement. As for the linear theory, the calculations predict that the simultaneous presence' of a magnetic field and rotation may produce conflicting tendencies.


2018 ◽  
Vol 172 ◽  
pp. 02003
Author(s):  
Alejandro Ayala ◽  
J. A. Flores ◽  
L. A. Hernández ◽  
S. Hernández-Ortiz

We use the linear sigma model coupled to quarks to compute the effective potential beyond the mean field approximation, including the contribution of the ring diagrams at finite temperature and baryon density. We determine the model couplings and use them to study the phase diagram in the baryon chemical potential-temperature plane and to locate the Critical End Point.


2006 ◽  
Vol 21 (04) ◽  
pp. 910-913 ◽  
Author(s):  
Mei Huang

Magnetic instability in gapless superconductors still remains as a puzzle. In this article, we point out that the instability might be caused by using BCS theory in mean-field approximation, where the phase fluctuation has been neglected. The mean-field BCS theory describes very well the strongly coherent or rigid superconducting state. With the increase of mismatch between the Fermi surfaces of pairing fermions, the phase fluctuation plays more and more important role, and "soften" the superconductor. The strong phase fluctuation will eventually quantum disorder the superconducting state, and turn the system into a phase-decoherent pseudogap state.


2006 ◽  
Vol 21 (31n33) ◽  
pp. 2513-2546 ◽  
Author(s):  
G. Röpke ◽  
P. Schuck

Quantum condensates in nuclear matter are treated beyond the mean-field approximation, with the inclusion of cluster formation. The occurrence of a separate binding pole in the four-particle propagator in nuclear matter is investigated with respect to the formation of a condensate of α-like particles (quartetting), which is dependent on temperature and density. Due to Pauli blocking, the formation of an α-like condensate is limited to the low-density region. Consequences for finite nuclei are considered. In particular, excitations of self-conjugate 2n-Z–2n-N nuclei near the n-α-breakup threshold are candidates for quartetting. We review some results and discuss their consequences. Exploratory calculations are performed for the density dependence of the α condensate fraction at zero temperature to address the suppression of the four-particle condensate below nuclear-matter density.


Sign in / Sign up

Export Citation Format

Share Document