scholarly journals Optimal control for the transmission dynamics of malaria disease model

2018 ◽  
Vol 1039 ◽  
pp. 012035
Author(s):  
Bundit Unyong
Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1272
Author(s):  
Fengsheng Chien ◽  
Stanford Shateyi

This paper studies the global stability analysis of a mathematical model on Babesiosis transmission dynamics on bovines and ticks populations as proposed by Dang et al. First, the global stability analysis of disease-free equilibrium (DFE) is presented. Furthermore, using the properties of Volterra–Lyapunov matrices, we show that it is possible to prove the global stability of the endemic equilibrium. The property of symmetry in the structure of Volterra–Lyapunov matrices plays an important role in achieving this goal. Furthermore, numerical simulations are used to verify the result presented.


Author(s):  
Francis Mugabi ◽  
Joseph Mugisha ◽  
Betty Nannyonga ◽  
Henry Kasumba ◽  
Margaret Tusiime

AbstractThe problem of foot and mouth disease (FMD) is of serious concern to the livestock sector in most nations, especially in developing countries. This paper presents the formulation and analysis of a deterministic model for the transmission dynamics of FMD through a contaminated environment. It is shown that the key parameters that drive the transmission of FMD in a contaminated environment are the shedding, transmission, and decay rates of the virus. Using numerical results, it is depicted that the host-to-host route is more severe than the environmental-to-host route. The model is then transformed into an optimal control problem. Using the Pontryagin’s Maximum Principle, the optimality system is determined. Utilizing a gradient type algorithm with projection, the optimality system is solved for three control strategies: optimal use of vaccination, environmental decontamination, and a combination of vaccination and environmental decontamination. Results show that a combination of vaccination and environmental decontamination is the most optimal strategy. These results indicate that if vaccination and environmental decontamination are used optimally during an outbreak, then FMD transmission can be controlled. Future studies focusing on the control measures for the transmission of FMD in a contaminated environment should aim at reducing the transmission and the shedding rates, while increasing the decay rate.


2019 ◽  
Vol 356 (7) ◽  
pp. 3991-4025 ◽  
Author(s):  
Ravi P. Agarwal ◽  
Qaisar Badshah ◽  
Ghaus ur Rahman ◽  
Saeed Islam

2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Hongwu Tan ◽  
Hui Cao

We build and study the transmission dynamics of a hand-foot-mouth disease model with vaccination. The reproduction number is given, the existence of equilibria is obtained, and the global stability of disease-free equilibrium is proved by constructing the Lyapunov function. We also apply optimal control theory to the hand-foot-mouth disease model. The treatment and vaccination interventions are considered in the hand-foot-mouth disease model, and the optimal control strategies based on minimizing the cost of intervention and minimizing the number of the infected people are given. Numerical results show the usefulness of the optimization strategies.


Author(s):  
Bragi Lovetrue

We present the AI-discovered aetiology of COVID-19, based on a precise disease model of COVID-19 built under five weeks that best matches the epidemiological characteristics, transmission dynamics, clinical features, and biological properties of COVID-19 and consistently explains the rapidly expanding COVID-19 literature. We present that SARS-CoV-2 implements a unique unbiased survival strategy of balancing viral replication with viral spread by increasing its dependence on (i) ACE2-expressing cells for viral entry and spread, (ii) PI3K signaling in ACE2-expressing cells for viral replication and egress, and (iii) viral-non-structural-and-accessory-protein-dependent immunomodulation to balance viral spread and viral replication. We further propose the combination of irinotecan (an in-market topoisomerase I inhibitor) and etoposide (an in-market topoisomerase IIinhibitor) could potentially be an exceptionally effective treatment to protect critically ill patients from death caused by COVID-19-specific cytokine storms triggered by sepsis, ARDS, and other fatal comorbidities.


Author(s):  
Liu Yang ◽  
Da Song ◽  
Meng Fan ◽  
Lu Gao

H7N9 avian influenza is a highly pathogenic zoonotic disease. In order to control the disease, many strategies have been adopted in China such as poultry culling, the closure of live poultry markets (LPMs), the vaccination of poultry, and the treatment for humans. Due to the limited resource, it is of paramount significance to achieve the optimal control. In this paper, an epidemic model incorporating the selective culling rate is formulated to investigate the transmission mechanism of H7N9. The threshold dynamics and bifurcation analyses of the model are well investigated. Furthermore, the problem of optimal control is explored in line with Pontryagin’s Maximum Principle, with consideration given to the comprehensive measures. The numerical simulations suggest that the vaccination of poultry and the closure of LPMs are the two most economical and effective measures.


Sign in / Sign up

Export Citation Format

Share Document