scholarly journals Stress and deformation analysis of double curvature arc dams using finite element method (FEM): A case of budhi gandaki hydropower project

2018 ◽  
Vol 1042 ◽  
pp. 012007
Author(s):  
Aanand Kumar Mishra ◽  
Ajay Singh ◽  
Akal Bahadur Singh
Author(s):  
Shiro Kobayashi ◽  
Soo-Ik Oh ◽  
Taylan Altan

The concept of the finite-element procedure may be dated back to 1943 when Courant approximated the warping function linearly in each of an assemblage of triangular elements to the St. Venant torsion problem and proceeded to formulate the problem using the principle of minimum potential energy. Similar ideas were used later by several investigators to obtain the approximate solutions to certain boundary-value problems. It was Clough who first introduced the term “finite elements” in the study of plane elasticity problems. The equivalence of this method with the well-known Ritz method was established at a later date, which made it possible to extend the applications to a broad spectrum of problems for which a variational formulation is possible. Since then numerous studies have been reported on the theory and applications of the finite-element method. In this and next chapters the finite-element formulations necessary for the deformation analysis of metal-forming processes are presented. For hot forming processes, heat transfer analysis should also be carried out as well as deformation analysis. Discretization for temperature calculations and coupling of heat transfer and deformation are discussed in Chap. 12. More detailed descriptions of the method in general and the solution techniques can be found in References [3-5], in addition to the books on the finite-element method listed in Chap. 1. The path to the solution of a problem formulated in finite-element form is described in Chap. 1 (Section 1.2). Discretization of a problem consists of the following steps: (1) describing the element, (2) setting up the element equation, and (3) assembling the element equations. Numerical analysis techniques are then applied for obtaining the solution of the global equations. The basis of the element equations and the assembling into global equations is derived in Chap. 5. The solution satisfying eq. (5.20) is obtained from the admissible velocity fields that are constructed by introducing the shape function in such a way that a continuous velocity field over each element can be denned uniquely in terms of velocities of associated nodal points.


Author(s):  
Jiemin Liu ◽  
Guangtao Ma

A typical ground imitating tank is analyzed regarding it as the thin-walled structure composed of plates (skins) and beams (reinforcement) using finite element method (FEM). Through moving the location of reinforcements, make the skins close with the flanges of the reinforcements in order to imitate actually the connection of the skins and the reinforcements. The thickness of plates, the size and the geometry shape and the location of reinforcements are taken as parameters to be optimized. In calculation, not only consider effects of the oil-weight, the extra-pressure in tank and the dead weight of the tank on the stresses and displacements of the tank, but also analyze the effects of the inertia forces produced due to the rotation of the tank on the stresses and displacements. Displacement, stress and deformation distributions of the ground imitating tank under the three typical flying postures imitated are given.


2010 ◽  
Vol 07 (01) ◽  
pp. 1-32 ◽  
Author(s):  
GUOWEI MA ◽  
XINMEI AN ◽  
LEI HE

This paper presents a review on the numerical manifold method (NMM), which covers the basic theories of the NMM, such as NMM components, NMM displacement approximation, formulations of the discrete system of equations, integration scheme, imposition of the boundary conditions, treatment of contact problems involved in the NMM, and also the recent developments and applications of the NMM. Modeling the strong discontinuities within the framework of the NMM is specially emphasized. Several examples demonstrating the capability of the NMM in modeling discrete block system, strong discontinuities, as well as weak discontinuities are given. The similarities and distinctions of the NMM with various other numerical methods such as the finite element method (FEM), the extended finite element method (XFEM), the generalized finite element method (GFEM), the discontinuous deformation analysis (DDA), and the distinct element method (DEM) are investigated. Further developments on the NMM are suggested.


Sign in / Sign up

Export Citation Format

Share Document