scholarly journals Application of the Virtual Fields Method to determine dynamic properties at intermediate strain rates

2018 ◽  
Vol 1063 ◽  
pp. 012041
Author(s):  
J-H Kim ◽  
J-S Park ◽  
F Barlat ◽  
F Pierron
2021 ◽  
Vol 162 ◽  
pp. 104101
Author(s):  
Jin-Seong Park ◽  
Ji-Min Kim ◽  
Frédéric Barlat ◽  
Ji-Ho Lim ◽  
Fabrice Pierron ◽  
...  

2018 ◽  
Vol 183 ◽  
pp. 02065
Author(s):  
V. Rey-de-Pedraza ◽  
F. Gálvez ◽  
D. Cendón Franco

The Hopkinson Bar has been widely used by many researchers for the analysis of dynamic properties of different brittle materials and, due to its great interest, for the study of concrete. In concrete structures subjected to high velocity impacts, initial compression pulses travel through the material leading to tensile stresses when they reach a free surface. These tensile efforts are the main cause of concrete fracture due to its low tensile strength compared to the compressive one. This is the reason why dynamic tests in concrete are becoming of great interest and are mostly focused in obtaining tensile fracture properties. Apart form the dynamic tensile strength, which has been widely studied by many authors in the last decades, the dynamic fracture energy presents an increased difficulty and so not too much experimental information can be found in literature. Moreover, up to date there is not a clear methodology proposed in order to obtain this parameter in an accurate way. In this work a new methodology for measuring the dynamic fracture energy is proposed by using the Hopkinson Bar technique. Initial tests for a conventional concrete have been carried out and the results for the dynamic fracture energy of concrete at different strain rates are presented.


2018 ◽  
Vol 183 ◽  
pp. 04005 ◽  
Author(s):  
Bar Nurel ◽  
Moshe Nahmany ◽  
Adin Stern ◽  
Nahum Frage ◽  
Oren Sadot

Additive manufacturing by Selective Laser Melting of metals is attracting substantial attention, due to its advantages, such as short-time production of customized structures. This technique is useful for building complex components using a metallic pre-alloyed powder. One of the most used materials in AMSLM is AlSi10Mg powder. Additively manufactured AlSi10Mg may be used as a structural material and it static mechanical properties were widely investigated. Properties in the strain rates of 5×102–1.6×103 s-1 and at higher strain rates of 5×103 –105 s-1 have been also reported. The aim of this study is investigation of dynamic properties in the 7×102–8×103 s-1 strain rate range, using the split Hopkinson pressure bar technique. It was found that the dynamic properties at strain-rates of 1×103–3×103 s-1 depend on a build direction and affected by heat treatment. At higher and lower strain-rates the effect of build direction is limited. The anisotropic nature of the material was determined by the ellipticity of samples after the SHPB test. No strain rate sensitivity was observed.


2009 ◽  
Vol 36 (3) ◽  
pp. 460-467 ◽  
Author(s):  
Ramzi Othman ◽  
Pierrick Guégan ◽  
Georges Challita ◽  
Franck Pasco ◽  
Daniel LeBreton

Sign in / Sign up

Export Citation Format

Share Document