scholarly journals Evaluation of Oxygen Reduction System (ORS) in Large-scale Fire Tests

2018 ◽  
Vol 1107 ◽  
pp. 062005
Author(s):  
Xiangyang Zhou ◽  
Yibing Xin ◽  
Sergey Dorofeev
2019 ◽  
Vol 106 ◽  
pp. 29-37
Author(s):  
Xiangyang Zhou ◽  
Yibing Xin ◽  
Sergey Dorofeev

Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 623
Author(s):  
Mengfan Shen ◽  
Ziwei Meng ◽  
Tong Xue ◽  
Hongfang Shen ◽  
Xiang-Hui Yan

To explore high-performing alternatives to platinum-based catalysts is highly desirable for lowering costs and thus promoting fuel cell commercialization. Herein, self-supported Fe-N-C materials were prepared by the pyrolysis of dual precursors including EDTA ferric sodium (EDTAFeNa) and melamine (MA), followed by acid-leaching and final annealing. Towards an oxygen reduction reaction (ORR) in 0.1 M KOH, the as-prepared MA/EDTAFeNa-HT2 delivered onset (Eonset) and half-wave (E1/2) potentials of 0.97 and 0.84 V vs. RHE, respectively, identical with that of a state-of-the-art Pt/C catalyst, accompanied with predominantly a four-electron pathway. The introduction of MA and extension of acid-leaching promoted a positive shift of 50 mV for E1/2 relative to that of only the EDTAFeNa-derived counterpart. It was revealed that the enhancement of ORR activity is attributed to a decrease in magnetic Fe species and increase in pyridinic/quanternary nitrogen content whilst nearly excluding effects of the graphitization degree, variety of crystalline iron species, and mesoscopic structure. The usage of dual precursors exhibited great potential for the large-scale production of inexpensive and efficient Fe-N-C materials.


2011 ◽  
Vol 31 (1) ◽  
pp. 1-22 ◽  
Author(s):  
Hideki Yoshioka ◽  
Yoshifumi Ohmiya ◽  
Masaki Noaki ◽  
Masashi Yoshida
Keyword(s):  

Catalysts ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 650 ◽  
Author(s):  
Carmelo Lo Vecchio ◽  
David Sebastián ◽  
María Lázaro ◽  
Antonino Aricò ◽  
Vincenzo Baglio

Direct methanol fuel cells (DMFCs) are emerging technologies for the electrochemical conversion of the chemical energy of a fuel (methanol) directly into electrical energy, with a low environmental impact and high efficiency. Yet, before this technology can reach a large-scale diffusion, specific issues must be solved, in particular, the high cost of the cell components. In a direct methanol fuel cell system, high capital costs are mainly derived from the use of noble metal catalysts; therefore, the development of low-cost electro-catalysts, satisfying the target requirements of high performance and durability, represents an important challenge. The research is currently addressed to the development of metal–nitrogen–carbon (M–N–C) materials as cheap and sustainable catalysts for the oxygen reduction reaction (ORR) in an acid environment, for application in polymer electrolyte fuel cells fueled by hydrogen or alcohol. In particular, this mini-review summarizes the recent advancements achieved in DMFCs using M–N–C catalysts. The presented analysis is restricted to M–N–C catalysts mounted at the cathode of a DMFC or investigated in rotating disk electrode (RDE) configuration for the ORR in the presence of methanol in order to study alcohol tolerance. The main synthetic routes and characteristics of the catalysts are also presented.


2021 ◽  
Author(s):  
Fengjiao Yu ◽  
Qi Ying ◽  
Shaofeng Ni ◽  
Chenxue Li ◽  
Daxiang Xue ◽  
...  

Large-scale application of rechargeable Zn-air batteries requires low-cost electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) as alternatives to noble metals. Herein, FeCo nanoparticles embedded in N-doped...


RSC Advances ◽  
2019 ◽  
Vol 9 (69) ◽  
pp. 40301-40308 ◽  
Author(s):  
Haoqi Yang ◽  
Shuqing Kou ◽  
Zhiyuan Li ◽  
Zhiyong Chang ◽  
Mi Wang ◽  
...  

Development of efficient metal-free electrocatalysts derived from biomass with high activity towards oxygen reduction reaction (ORR) has gained significance attention due to their low manufacturing cost, environmental friendliness and easy large-scale production.


Sign in / Sign up

Export Citation Format

Share Document