scholarly journals Measuring grain boundary segregation: tomographic atom probe field ion microscopy (APFIM) vs. analytical scanning transmission electron microscopy (STEM)

2019 ◽  
Vol 1190 ◽  
pp. 012002
Author(s):  
T Walther
Author(s):  
J. R. Michael ◽  
D. B. Williams

Bismuth is known to segregate to grain boundaries in copper resulting in embrittlement and intergranular failure at low stress levels. This segregation has been studied primarily by Auger Electron Spectroscopy (AES). The applicability of scanning transmission electron microscopy (STEM)and Energy Dispersive Spectroscopy (EDS) to the study of equilibrium grain boundary segregation has already been demonstrated and the aim of this study is to determine the degree of segregation as a function of time and temperature. The major advantage of STEM over AES is that STEM does not require fracturing of the specimen, so the boundaries to be studied are left undisturbed. Thus, this technique is also applicable to systems which do not exhibit intergranular fracture.Cu-Bi specimens were prepared by evaporating Bi onto both sides of 3mm Cu discs, which were then heated for 1 week at 400°C to allow the Bi to diffuse into the Cu. The samples were then aged at 450, 550, 600, 650, and 700°C for 3 days and 12 days, ion-thinned and then examined in a Philips EM 400T TEM/STEM with an EDAX detector and EDAX 9100 analyzer. If necessary, the specimens were tilted such that the boundaries were parallel to the electron beam.


Author(s):  
J. R. Michael ◽  
K. A. Taylor

Although copper is considered an incidental or trace element in many commercial steels, some grades contain up to 1-2 wt.% Cu for precipitation strengthening. Previous electron microscopy and atom-probe/field-ion microscopy (AP/FIM) studies indicate that the precipitation of copper from ferrite proceeds with the formation of Cu-rich bcc zones and the subsequent transformation of these zones to fcc copper particles. However, the similarity between the atomic scattering amplitudes for iron and copper and the small misfit between between Cu-rich particles and the ferrite matrix preclude the detection of small (<5 nm) Cu-rich particles by conventional transmission electron microscopy; such particles have been imaged directly only by FIM. Here results are presented whereby the Cu Kα x-ray signal was used in a dedicated scanning transmission electron microscope (STEM) to image small Cu-rich particles in a steel. The capability to detect these small particles is expected to be helpful in understanding the behavior of copper in steels during thermomechanical processing and heat treatment.


1981 ◽  
Vol 8 ◽  
Author(s):  
John B. Vander Sande

ABSTRACTThe techniques of scanning transmission electron microscopy and field iron microscopy/atom probe are briefly described. The advantages of these techniques for high spatial resolution compositional analysis are discussed and examples cited.


Sign in / Sign up

Export Citation Format

Share Document