scholarly journals Optimizing Type Ia supernova follow-up in future dark energy surveys

2008 ◽  
Vol 125 ◽  
pp. 012011
Author(s):  
P Nugent ◽  
R Thomas ◽  
G Aldering
Author(s):  
Syed A. Uddin ◽  
Jeremy Mould ◽  
Chris Lidman ◽  
Vanina Ruhlmann-Kleider ◽  
Delphine Hardin

AbstractWe compare two Type Ia supernova samples that are drawn from a spectroscopically confirmed Type Ia supernova sample: a host-selected sample in which SNe Ia are restricted to those that have a spectroscopic redshift from the host; and a broader, more traditional sample in which the redshift could come from either the SN or the host. The host-selected sample is representative of SN samples that will use the redshift of the host to infer the SN redshift, long after the SN has faded from view. We find that SNe Ia that are selected on the availability of a redshift from the host differ from SNe Ia that are from the broader sample. The former tend to be redder, have narrower light curves, live in more massive hosts, and tend to be at lower redshifts. We find that constraints on the equation of state of dark energy, w, and the matter density, ΩM, remain consistent between these two types of samples. Our results are important for ongoing and future supernova surveys, which unlike previous supernova surveys, will have limited real-time follow-up to spectroscopically classify the SNe they discover. Most of the redshifts in these surveys will come from the hosts.


2017 ◽  
Vol 14 (S339) ◽  
pp. 47-49
Author(s):  
G. Hosseinzadeh

AbstractThis paper presented very early, high-cadence photometric observations of the nearby Type Ia SN 2017cbv. The light-curve is unique in that during the first five days of observations it has a blue bump in the U, B, and g bands which is clearly resolved by virtue of our photometric cadence of 5.7 hr during that time span. We modelled the light-curve as the combination of an early shock of the supernova ejecta against a non-degenerate companion star plus a standard Type Ia supernova component. Our best-fit model suggested the presence of a subgiant star 56 R⊙ from the exploding white dwarf, although that number is highly model-dependent. While the model matches the optical light-curve well, it over-predicts the flux expected in the ultraviolet bands. That may indicate that the shock is not a blackbody, perhaps because of line blanketing in the UV. Alternatively, it could point to another physical explanation for the optical blue bump, such as interaction with circumstellar material or an unusual distribution of the element Ni. Early optical spectra of SN 2017cbv show strong carbon absorption as far as day –13 with respect to maximum light, suggesting that the progenitor system contained a significant amount of unburnt material. These results for SN 2017cbv illustrate the power of early discovery and intense follow-up of nearby supernovæ for resolving standing questions about the progenitor systems and explosion mechanisms of Type Ia supernovæ.


Author(s):  
YUNGUI GONG ◽  
QING GAO ◽  
ZONG-HONG ZHU

We use the SNLS3 compilation of 472 type Ia supernova data, the baryon acoustic oscillation measurement of distance, and the cosmic microwave background radiation data from the seven year Wilkinson Microwave Anisotropy Probe to study the effect of their different combinations on the fittings of cosmological parameters. Neither BAO nor WMAP7 data alone gives good constraint on the equation of state parameter of dark energy, but both WMAP7 data and BAO data help type Ia supernova data break the degeneracies among the model parameters, hence tighten the constraint on the variation of equation of state parameter wa, and WMAP7 data does the job a little better. Although BAO and WMAP7 data provide reasonably good constraints on Ωm and Ωk, it is not able to constrain the dynamics of dark energy, we need SNe Ia data to probe the property of dark energy, especially the variation of the equation of state parameter of dark energy. For the SNLS SNe Ia data, the nuisance parameters α and β are consistent for all different combinations of the above data. Their impacts on the fittings of cosmological parameters are minimal. ΛCDM model is consistent with current observational data.


2003 ◽  
Vol 594 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Yun Wang ◽  
Katherine Freese ◽  
Paolo Gondolo ◽  
Matthew Lewis

2004 ◽  
Vol 607 (2) ◽  
pp. 665-687 ◽  
Author(s):  
Adam G. Riess ◽  
Louis‐Gregory Strolger ◽  
John Tonry ◽  
Stefano Casertano ◽  
Henry C. Ferguson ◽  
...  

2019 ◽  
Vol 34 (21) ◽  
pp. 1950167
Author(s):  
Yan-Hong Yao ◽  
Xin-He Meng

In this paper, we interpret the dark energy as an effect caused by small-scale inhomogeneities of the universe with the use of the spatial averaged approach of Buchert [Gen. Relat. Gravit. 32, 105 (2000); 33, 1381 (2001)]. The model considered here adopts the Chevallier–Polarski–Linder (CPL) parametrizations of the equation of state of the effective perfect fluid from the backreaction effect. Thanks to the effective geometry introduced by Larena et al. [Phys. Rev. D 79, 083011 (2009)] in their previous work, we confront such backreaction model with the latest type Ia supernova and Hubble parameter observations, coming out with the results that reveal the difference between the Friedmann–Lemaître–Robertson–Walker model and backreaction model.


2009 ◽  
Vol 3 (1) ◽  
pp. 144-178 ◽  
Author(s):  
Christopher Genovese ◽  
Peter Freeman ◽  
Larry Wasserman ◽  
Robert Nichol ◽  
Christopher Miller

2017 ◽  
Vol 841 (1) ◽  
pp. 64 ◽  
Author(s):  
WeiKang Zheng ◽  
Alexei V. Filippenko ◽  
Jon Mauerhan ◽  
Melissa L. Graham ◽  
Heechan Yuk ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document