scholarly journals Measurements of Earthquake Moment Magnitude (Mw) to Estimate Detonation Energy of a Nuclear Bomb as Plutonium-240

2020 ◽  
Vol 1491 ◽  
pp. 012034
Author(s):  
A Arimuko ◽  
E Sujarwanto ◽  
A Marsono
2020 ◽  
Vol 91 (5) ◽  
pp. 2817-2827 ◽  
Author(s):  
Noha Farghal ◽  
Andrew Barbour ◽  
John Langbein

Abstract We investigate the potential of using borehole strainmeter data from the Network of the Americas (NOTA) and the U.S. Geological Survey networks to estimate earthquake moment magnitudes for earthquake early warning (EEW) applications. We derive an empirical equation relating peak dynamic strain, earthquake moment magnitude, and hypocentral distance, and investigate the effects of different types of instrument calibration on model misfit. We find that raw (uncalibrated) strains fit the model as accurately as calibrated strains. We test the model by estimating moment magnitudes of the largest two earthquakes in the July 2019 Ridgecrest earthquake sequence—the M 6.4 foreshock and the M 7.1 mainshock—using two strainmeters located within ∼50  km of the rupture. In both the cases, the magnitude based on the dynamic strain component is within ∼0.1–0.4 magnitude units of the catalog moment magnitude. We then compare the temporal evolution of our strain-derived magnitudes for the largest two Ridgecrest events to the real-time performance of the ShakeAlert EEW System (SAS). The final magnitudes from NOTA borehole strainmeters are close to SAS real-time estimates for the M 6.4 foreshock, and significantly more accurate for the M 7.1 mainshock.


Author(s):  
Minahil Riaz Toor

Dr. Hassan Abbas is a Pakistani-American academic whose interest area lies in South and Central Asia. He is presently a Professor and Chair of the Department of Regional and Analytical Studies at National Defense University, Washington, DC. Similar to his previous books, Hassan Abbas has taken up yet another topic that revolves around the statehood of Pakistan.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Geert Hensgens ◽  
Hjalmar Laudon ◽  
Mark S. Johnson ◽  
Martin Berggren

AbstractThe boreal forest is among the largest terrestrial biomes on earth, storing more carbon (C) than the atmosphere. Due to rapid climatic warming and enhanced human development, the boreal region may have begun transitioning from a net C sink to a net source. This raises serious concern that old biogenic soil C can be re-introduced into the modern C cycle in near future. Combining bio-decay experiments, mixing models and the Keeling plot method, we discovered a distinct old pre-bomb organic carbon fraction with high biodegradation rate. In total, 34 ± 12% of water-extractable organic carbon (WEOC) in podzols, one of the dominating boreal soil types, consisted of aged (~ 1000 year) labile C. The omission of this aged (i.e., Δ14C depleted) WEOC fraction in earlier studies is due to the co-occurrence with Δ14C enriched modern C formed following 1950s nuclear bomb testing masking its existence. High lability of aged soil WEOC and masking effects of modern Δ14C enriched C suggests that the risk for mobilization and re-introduction of this ancient C pool into the modern C cycle has gone undetected. Our findings have important implications for earth systems models in terms of climate-carbon feedbacks and the future C balance of the boreal forest.


1987 ◽  
Vol 58 (4) ◽  
pp. 119-124 ◽  
Author(s):  
Gail M. Atkinson ◽  
David M. Boore

Abstract A stochastic model of ground motion has been used as a basis for comparison of data and theoretically-predicted relations between mN (commonly denoted by mbLg) and moment magnitude for eastern North America (ENA) earthquakes. mN magnitudes are recomputed for several historical ENA earthquakes, to ensure consistency of definition and provide a meaningful data set. We show that by itself the magnitude relation cannot be used as a discriminant between two specific spectral scaling relations, one with constant stress and the other with stress increasing with seismic moment, that have been proposed for ENA earthquakes.


1999 ◽  
Vol 91 (16) ◽  
pp. 1424-1425
Author(s):  
E. S. Gilbert ◽  
R. Tarone ◽  
A. Bouville ◽  
E. Ron

Sign in / Sign up

Export Citation Format

Share Document