scholarly journals Object Detection and Localization Based on Binocular Vision for Autonomous Vehicles

2020 ◽  
Vol 1544 ◽  
pp. 012134
Author(s):  
Mingchi Feng ◽  
Yibo Liu ◽  
Panpan Jiang ◽  
Jingshu Wang
2021 ◽  
Vol 7 (8) ◽  
pp. 145
Author(s):  
Antoine Mauri ◽  
Redouane Khemmar ◽  
Benoit Decoux ◽  
Madjid Haddad ◽  
Rémi Boutteau

For smart mobility, autonomous vehicles, and advanced driver-assistance systems (ADASs), perception of the environment is an important task in scene analysis and understanding. Better perception of the environment allows for enhanced decision making, which, in turn, enables very high-precision actions. To this end, we introduce in this work a new real-time deep learning approach for 3D multi-object detection for smart mobility not only on roads, but also on railways. To obtain the 3D bounding boxes of the objects, we modified a proven real-time 2D detector, YOLOv3, to predict 3D object localization, object dimensions, and object orientation. Our method has been evaluated on KITTI’s road dataset as well as on our own hybrid virtual road/rail dataset acquired from the video game Grand Theft Auto (GTA) V. The evaluation of our method on these two datasets shows good accuracy, but more importantly that it can be used in real-time conditions, in road and rail traffic environments. Through our experimental results, we also show the importance of the accuracy of prediction of the regions of interest (RoIs) used in the estimation of 3D bounding box parameters.


2020 ◽  
Vol 14 (11) ◽  
pp. 1410-1417 ◽  
Author(s):  
Alfred Daniel ◽  
Karthik Subburathinam ◽  
Bala Anand Muthu ◽  
Newlin Rajkumar ◽  
Seifedine Kadry ◽  
...  

Author(s):  
Mhafuzul Islam ◽  
Mashrur Chowdhury ◽  
Hongda Li ◽  
Hongxin Hu

Vision-based navigation of autonomous vehicles primarily depends on the deep neural network (DNN) based systems in which the controller obtains input from sensors/detectors, such as cameras, and produces a vehicle control output, such as a steering wheel angle to navigate the vehicle safely in a roadway traffic environment. Typically, these DNN-based systems in the autonomous vehicle are trained through supervised learning; however, recent studies show that a trained DNN-based system can be compromised by perturbation or adverse inputs. Similarly, this perturbation can be introduced into the DNN-based systems of autonomous vehicles by unexpected roadway hazards, such as debris or roadblocks. In this study, we first introduce a hazardous roadway environment that can compromise the DNN-based navigational system of an autonomous vehicle, and produce an incorrect steering wheel angle, which could cause crashes resulting in fatality or injury. Then, we develop a DNN-based autonomous vehicle driving system using object detection and semantic segmentation to mitigate the adverse effect of this type of hazard, which helps the autonomous vehicle to navigate safely around such hazards. We find that our developed DNN-based autonomous vehicle driving system, including hazardous object detection and semantic segmentation, improves the navigational ability of an autonomous vehicle to avoid a potential hazard by 21% compared with the traditional DNN-based autonomous vehicle driving system.


2021 ◽  
Vol 11 (13) ◽  
pp. 6016
Author(s):  
Jinsoo Kim ◽  
Jeongho Cho

For autonomous vehicles, it is critical to be aware of the driving environment to avoid collisions and drive safely. The recent evolution of convolutional neural networks has contributed significantly to accelerating the development of object detection techniques that enable autonomous vehicles to handle rapid changes in various driving environments. However, collisions in an autonomous driving environment can still occur due to undetected obstacles and various perception problems, particularly occlusion. Thus, we propose a robust object detection algorithm for environments in which objects are truncated or occluded by employing RGB image and light detection and ranging (LiDAR) bird’s eye view (BEV) representations. This structure combines independent detection results obtained in parallel through “you only look once” networks using an RGB image and a height map converted from the BEV representations of LiDAR’s point cloud data (PCD). The region proposal of an object is determined via non-maximum suppression, which suppresses the bounding boxes of adjacent regions. A performance evaluation of the proposed scheme was performed using the KITTI vision benchmark suite dataset. The results demonstrate the detection accuracy in the case of integration of PCD BEV representations is superior to when only an RGB camera is used. In addition, robustness is improved by significantly enhancing detection accuracy even when the target objects are partially occluded when viewed from the front, which demonstrates that the proposed algorithm outperforms the conventional RGB-based model.


Author(s):  
James Sewell ◽  
Theo van Niekerk ◽  
Russell Phillips ◽  
Paul Mooney ◽  
Riaan Stopforth

Object detection (OD) within a video is one of the relevant and critical research areas in the computer vision field. Due to the widespread of Artificial Intelligence, the basic principle in real life nowadays and its exponential growth predicted in the epochs to come, it will transmute the public. Object Detection has been extensively implemented in several areas, including human-machine Interaction, autonomous vehicles, security with video surveillance, and various fields that will be mentioned further. However, this augmentation of OD tackles different challenges such as occlusion, illumination variation, object motion, without ignoring the real-time aspect that can be quite problematic. This paper also includes some methods of application to take into account these issues. These techniques are divided into five subcategories: Point Detection, segmentation, supervised classifier, optical flow, a background modeling. This survey decorticates various methods and techniques used in object detection, as well as application domains and the problems faced. Our study discusses the cruciality of deep learning algorithms and their efficiency on future improvement in object detection topics within video sequences.


Sign in / Sign up

Export Citation Format

Share Document