scholarly journals Buckling and post-buckling of FRC laminated beams in thermal environment using a generalized higher-order shear deformation zig-zag beam model

2020 ◽  
Vol 1545 ◽  
pp. 012003
Author(s):  
Qiduo Jin ◽  
Yiru Ren
Author(s):  
Vu Hoai Nam ◽  
Nguyen Thi Phuong ◽  
Dang Thuy Dong ◽  
Nguyen Thoi Trung ◽  
Nguyen Van Tue

In this paper, an analytical approach for nonlinear buckling and post-buckling behavior of stiffened porous functionally graded plate rested on Pasternak's elastic foundation under mechanical load in thermal environment is presented. The orthogonal and/or oblique stiffeners are attached to the surface of plate and are included in the calculation by improving the Lekhnitskii's smeared stiffener technique in the framework of higher-order shear deformation plate theory. The complex equilibrium and stability equations are established based on the Reddy's higher-order shear deformation plate theory and taken into account the geometrical nonlinearity of von Kármán. The solution forms of displacements satisfying the different boundary conditions are chosen, the stress function method and the Galerkin procedure are used to solve the problem. The good agreements of the present analytical solution are validated by making the comparisons of the present results with other results. In addition, the effects of porosity distribution, stiffener, volume fraction index, thermal environment, elastic foundation… on the critical buckling load and post-buckling response of porous functionally graded material plates are numerically investigated.


2019 ◽  
Vol 57 ◽  
pp. 175-191 ◽  
Author(s):  
Wafa Adda Bedia ◽  
Mohammed Sid Ahmed Houari ◽  
Aicha Bessaim ◽  
Abdelmoumen Anis Bousahla ◽  
Abdelouahed Tounsi ◽  
...  

In present paper, a novel two variable shear deformation beam theories are developed and applied to investigate the combined effects of nonlocal stress and strain gradient on the bending and buckling behaviors of nanobeams by using the nonlocal strain gradient theory. The advantage of this theory relies on its two-unknown displacement field as the Euler-Bernoulli beam theory, and it is capable of accurately capturing shear deformation effects, instead of three as in the well-known first shear deformation theory and higher-order shear deformation theory. A shear correction factor is, therefore, not needed. Equations of motion are obtained via Hamilton’s principle. Analytical solutions for the bending and buckling analysis are given for simply supported beams. Efficacy of the proposed model is shown through illustrative examples for bending buckling of nanobeams. The numerical results obtained are compared with those of other higher-order shear deformation beam theory. The results obtained are found to be accurate. Verification studies show that the proposed theory is not only accurate and simple in solving the bending and buckling behaviour of nanobeams, but also comparable with the other shear deformation theories which contain more number of unknowns


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Zakaria Ibnorachid ◽  
Lhoucine Boutahar ◽  
Khalid EL Bikri ◽  
Rhali Benamar

In this paper, free vibrations of Porous Functionally Graded Beams (P-FGBs), resting on two-parameter elastic foundations, and exposed to three forms of thermal field, uniform, linear, and sinusoidal, are studied using a Refined Higher-order shear Deformation Theory. The present theory accounts for shear deformation by considering a constant transverse displacement and a higher-order variation of the axial displacement through the thickness of the beam. The stress-free boundary conditions are satisfied on the upper and lower surfaces of the beam without using any shear correction factor. The material properties are temperature-dependent and vary continuously through the depth direction of the beam, based on a modified power-law rule, in which two kinds of porosity distributions, uniform, and nonuniform, through the cross-section area of the beam, are considered. Hamilton’s principle is applied to obtain governing equations of motion, which are solved using a Navier-type analytical solution for simply supported P-FGB. Numerical examples are proposed and discussed in detail, to prove the effect of the thermal environment, the porosity distribution, and the influence of several parameters such as the power-law index, porosity volume fraction, slenderness ratio, and elastic foundation parameters on the critical buckling temperatures and the natural frequencies of the P-FGB.


2016 ◽  
Vol 51 (5) ◽  
pp. 623-635 ◽  
Author(s):  
M Naghinejad ◽  
H R Ovesy

In the present article, the variational energy principle is used to derive the expression for energy release rate in buckled composite laminate containing through-the-width delamination, subjected to in-plane strains. Boundary conditions are clamped at both edges. Buckling and post-buckling solutions are obtained and expressions for critical buckling load and post-buckling deflection have been developed. A through-the-width delamination model has been considered and formulations are based on higher order shear deformation theory. The effects of considering the higher order shear deformation theory on equivalent bending rigidity, buckling load, and energy release rate have been investigated. Finally, the results of current study have been compared with the results of finite element method analysis by Abaqus/CAE and those available in the literature.


2019 ◽  
Vol 15 (6) ◽  
pp. 1152-1169 ◽  
Author(s):  
Ahmed Bekhadda ◽  
Ismail Bensaid ◽  
Abdelmadjid Cheikh ◽  
Bachir Kerboua

Purpose The purpose of this paper is to study the static buckling and free vibration of continuously graded ceramic-metal beams by employing a refined higher-order shear deformation, which is also the primary goal of this paper. Design/methodology/approach The proposed model is able to catch both the microstructural and shear deformation impacts without employing any shear correction factors, due to the realistic distribution of transverse shear stresses. The material properties are supposed to vary across the thickness direction in a graded form and are estimated by a power-law model. The equations of motion and related boundary conditions are extracted using Hamilton’s principle and then resolved by analytical solutions for calculating the critical buckling loads and natural frequencies. Findings The obtained results are checked and compared with those of other theories that exist in the literature. At last, a parametric study is provided to exhibit the influence of different parameters such as the power-law index, beam geometrical parameters, modulus ratio and axial load on the dynamic and buckling characteristics of FG beams. Originality/value Searching in the literature and to the best of the authors’ knowledge, there are limited works that consider the coupled effect between the vibration and the axial load of FG beams based on new four-variable refined beam theory. In comparison with a beam model, the number of unknown variables resulting is only four in the general cases, as against five in the case of other shear deformation theories. The actual model represents a real distribution of transverse shear effects besides a parabolic arrangement of the transverse shear strains over the thickness of the beam, so it is needless to use of any shear correction factors.


Sign in / Sign up

Export Citation Format

Share Document