scholarly journals A Wavelet Analysis-Based Big Data Spectral Clustering Algorithm for Electric Internet of Things

2020 ◽  
Vol 1627 ◽  
pp. 012007
Author(s):  
Hao Zhang ◽  
Xin Liu ◽  
Donglan Liu ◽  
Hao Yu
2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Guangshun Li ◽  
Shuzhen Xu ◽  
Junhua Wu ◽  
Heng Ding

With the development of Internet of Things (IoT), the massive data generated by it forms big data, and the complexity of dealing with big data brings challenges to resource scheduling in edge computing. In order to solve the problem of resource scheduling and improve the satisfaction of users in edge computing environment, we propose a user-oriented improved spectral clustering scheduling algorithm (ISCM) in this paper. Based on the improved k-means algorithm, the ISCM algorithm solves the problem that the clustering result is sensitive to the initial value and realizes the reclustering, which makes the obtained clustering results more stable. Finally, the edge computing resource scheduling scheme is obtained based on the clustering results. The experimental results show that the resource scheduling scheme based on improved spectral clustering algorithm is superior to traditional spectral clustering algorithm in edge computing environment.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 596
Author(s):  
Krishna Kumar Sharma ◽  
Ayan Seal ◽  
Enrique Herrera-Viedma ◽  
Ondrej Krejcar

Calculating and monitoring customer churn metrics is important for companies to retain customers and earn more profit in business. In this study, a churn prediction framework is developed by modified spectral clustering (SC). However, the similarity measure plays an imperative role in clustering for predicting churn with better accuracy by analyzing industrial data. The linear Euclidean distance in the traditional SC is replaced by the non-linear S-distance (Sd). The Sd is deduced from the concept of S-divergence (SD). Several characteristics of Sd are discussed in this work. Assays are conducted to endorse the proposed clustering algorithm on four synthetics, eight UCI, two industrial databases and one telecommunications database related to customer churn. Three existing clustering algorithms—k-means, density-based spatial clustering of applications with noise and conventional SC—are also implemented on the above-mentioned 15 databases. The empirical outcomes show that the proposed clustering algorithm beats three existing clustering algorithms in terms of its Jaccard index, f-score, recall, precision and accuracy. Finally, we also test the significance of the clustering results by the Wilcoxon’s signed-rank test, Wilcoxon’s rank-sum test, and sign tests. The relative study shows that the outcomes of the proposed algorithm are interesting, especially in the case of clusters of arbitrary shape.


2011 ◽  
Vol 121-126 ◽  
pp. 2372-2376
Author(s):  
Dan Dan Wang ◽  
Yu Zhou ◽  
Qing Wei Ye ◽  
Xiao Dong Wang

The mode peaks in frequency domain of vibration signal are strongly interfered by strong noise, causing the inaccuracy mode parameters. According to this situation, this paper comes up with the thought of mode-peak segmentation based on the spectral clustering algorithm. First, according to the concept of wave packet, the amplitude-frequency of vibration signal is divided into wave packets. Taking each wave packet as a sample of clustering algorithm, the spectral clustering algorithm is used to classify these wave packets. The amplitude-frequency curve of a mode peak becomes a big wave packet in macroscopic. The experiment to simulation signals indicates that this spectral clustering algorithm could accord with the macroscopic observation of mode segmentation effectively, and has outstanding performance especially in strong noise.


2014 ◽  
Vol 687-691 ◽  
pp. 1350-1353
Author(s):  
Li Li Fu ◽  
Yong Li Liu ◽  
Li Jing Hao

Spectral clustering algorithm is a kind of clustering algorithm based on spectral graph theory. As spectral clustering has deep theoretical foundation as well as the advantage in dealing with non-convex distribution, it has received much attention in machine learning and data mining areas. The algorithm is easy to implement, and outperforms traditional clustering algorithms such as K-means algorithm. This paper aims to give some intuitions on spectral clustering. We describe different graph partition criteria, the definition of spectral clustering, and clustering steps, etc. Finally, in order to solve the disadvantage of spectral clustering, some improvements are introduced briefly.


Author(s):  
Hind Bangui ◽  
Mouzhi Ge ◽  
Barbora Buhnova

Due to the massive data increase in different Internet of Things (IoT) domains such as healthcare IoT and Smart City IoT, Big Data technologies have been emerged as critical analytics tools for analyzing the IoT data. Among the Big Data technologies, data clustering is one of the essential approaches to process the IoT data. However, how to select a suitable clustering algorithm for IoT data is still unclear. Furthermore, since Big Data technology are still in its initial stage for different IoT domains, it is thus valuable to propose and structure the research challenges between Big Data and IoT. Therefore, this article starts by reviewing and comparing the data clustering algorithms that can be applied in IoT datasets, and then extends the discussions to a broader IoT context such as IoT dynamics and IoT mobile networks. Finally, this article identifies a set of research challenges that harvest a research roadmap for the Big Data research in IoT domains. The proposed research roadmap aims at bridging the research gaps between Big Data and various IoT contexts.


Sign in / Sign up

Export Citation Format

Share Document