scholarly journals Examination Paper Image Segmentation with Adversarial Network

2020 ◽  
Vol 1631 ◽  
pp. 012119
Author(s):  
Siquan Hu ◽  
Muliang Zhang ◽  
Zhiguo Shi ◽  
Min Zhang
2020 ◽  
Vol 10 (15) ◽  
pp. 5032
Author(s):  
Xiaochang Wu ◽  
Xiaolin Tian

Medical image segmentation is a classic challenging problem. The segmentation of parts of interest in cardiac medical images is a basic task for cardiac image diagnosis and guided surgery. The effectiveness of cardiac segmentation directly affects subsequent medical applications. Generative adversarial networks have achieved outstanding success in image segmentation compared with classic neural networks by solving the oversegmentation problem. Cardiac X-ray images are prone to weak edges, artifacts, etc. This paper proposes an adaptive generative adversarial network for cardiac segmentation to improve the segmentation rate of X-ray images by generative adversarial networks. The adaptive generative adversarial network consists of three parts: a feature extractor, a discriminator and a selector. In this method, multiple generators are trained in the feature extractor. The discriminator scores the features of different dimensions. The selector selects the appropriate features and adjusts the network for the next iteration. With the help of the discriminator, this method uses multinetwork joint feature extraction to achieve network adaptivity. This method allows features of multiple dimensions to be combined to perform joint training of the network to enhance its generalization ability. The results of cardiac segmentation experiments on X-ray chest radiographs show that this method has higher segmentation accuracy and less overfitting than other methods. In addition, the proposed network is more stable.


Author(s):  
Lulu Tian ◽  
Zidong Wang ◽  
Weibo Liu ◽  
Yuhua Cheng ◽  
Fuad E. Alsaadi ◽  
...  

AbstractAs a popular nondestructive testing (NDT) technique, thermal imaging test demonstrates competitive performance in crack detection, especially for detecting subsurface cracks. In thermal imaging test, the temperature of the crack area is higher than that of the non-crack area during the NDT process. By extracting the features of the thermal image sequences, the temperature curve of each spatial point is employed for crack detection. Nevertheless, the quality of thermal images is influenced by the noises due to the complex thermal environment in NDT. In this paper, a modified generative adversarial network (GAN) is employed to improve the image segmentation performance. To improve the feature extraction ability and alleviate the influence of noises, a penalty term is put forward in the loss function of the conventional GAN. A data preprocessing method is developed where the principle component analysis algorithm is adopted for feature extraction. The data argumentation technique is utilized to guarantee the quantity of the training samples. To validate its effectiveness in thermal imaging NDT, the modified GAN is applied to detect the cracks on the eddy current pulsed thermography NDT dataset.


Sign in / Sign up

Export Citation Format

Share Document