scholarly journals A new approach to the development of zero-emission power generation system

2020 ◽  
Vol 1675 ◽  
pp. 012121
Author(s):  
A F Ryzhkov ◽  
T F Bogatova ◽  
G E Maslennikov ◽  
P V Osipov
Author(s):  
Jing-yu Ran ◽  
Chang-lei Qin

CO2 is a main greenhouse gas fazing the Earth. So countries around the world are actively studying the methods of capturing CO2 to reduce emission. In this paper, firstly a brief review was carried out on the research development and technical problems of three typical near-zero CO2 emission power generation systems. Focus was made on the construction of one possible commercially applied zero emission system, which has new principle but relatively conservative sections. Preliminary analysis and calculation of energy and mass flow have been finished to evaluate its performance. The results showed that apart from zero CO2 emission, a relatively tempting efficiency could be sustained. Theoretically, higher than 90% purity of CO2 and 63% generation efficiency of the whole system can be achieved.


Author(s):  
Shigenao Maruyama ◽  
Koji Deguchi ◽  
Atsuki Komiya

Methane hydrate dissociation is studied using numerical and experimental approaches for a low carbon dioxide (CO2) emission power generation system utilizing methane hydrate. A novel power generation system has been proposed by authors, in which methane gas produced from oceanic methane hydrate reservoir by thermal stimulation method is used as fuels. The performance of the power generation system and the heat loss during the injection of hot seawater to the methane hydrate layer were investigated in previous study. However, the estimation of the methane gas production rate from the methane hydrate reservoir is necessary to evaluate the performance of whole system. In this study, we conducted the numerical simulation of methane hydrate reservoir. In order to evaluate the reaction rate of methane hydrate dissociation, the methane hydrate formation and dissociation experiment was conducted. The result of numerical simulation indicates the necessity of improvement of the production process to supply the heat of hot water effectively. From the experimental result, it comes to see that consideration of the scale effect of the methane hydrate construction is necessary to describe the dissociation rate.


Energy ◽  
2012 ◽  
Vol 47 (1) ◽  
pp. 340-347 ◽  
Author(s):  
Shigenao Maruyama ◽  
Koji Deguchi ◽  
Masazumi Chisaki ◽  
Junnosuke Okajima ◽  
Atsuki Komiya ◽  
...  

Author(s):  
Hongguang Jin ◽  
Lin Gao ◽  
Wei Han ◽  
Jinyue Yan

Reducing the energy penalty for CO2 Capture and Storage (CCS) is a challenge. Most of previous studies for CCS have been focused on power generation system. When CCS is included in the polygeneration system, a new methodology that jointly considering CCS and liquid fuel production should be introduced. In this paper, we proposed a new approach integrating CCS into a coal-based polygeneration system for power generation and methanol production: the syngas produced from the coal gasifier, without adjusting the composition (CO/H2 ratio) by shift reaction, is used to synthesis methanol directly. Moreover, the partial-recycle scheme, in which a part of unreacted gas is recycled back to the synthesis reactor, is adopted in the synthesis unit. Another part of unreacted gas is treated to remove CO2, and then is used as clean fuel for the power generation subsystem. Compared to the conventional CCS approaches adopted by the power generation systems, the new approach is mainly characterized by two features: firstly, the combination of the removal of the composition adjustment process and a partial-recycle scheme can not only reduces the energy consumption for methanol production, but also obtains a high concentration of COX (CO and CO2) in the unreacted gas; secondly, the CO2 is captured from the unreacted gas, instead of from syngas generated by the gasifier. Due to increment of COX concentration, the new approach can reduce the energy consumption for CO2 capture compared to conventional pre-combustion CO2 capture. In the conventional coal based IGCC systems, the thermal efficiency is around 34-36% for a case with CO2 capture and around 44% for a case without CO2 capture. However, with the innovative approach integrating CCS, the polygeneration system in this paper can achieve the equivalent thermal efficiency as high as 47% when 72% of CO2 is recovered, which provides a significant improvement for CO2 capture. It’s clearly that the new approach can increase the thermal efficiency, instead of incurring an energy penalty for CO2 capture. The results achieved in this study have provided a new methodology integrating CO2 capture into the polygeneration system, which reveals the different characteristics compared to power-generation system that has been overlooked by the previous studies.


Sign in / Sign up

Export Citation Format

Share Document