A New Approach Integrating CO2 Capture Into a Coal-Based Polygeneration System of Power and Liquid Fuel

Author(s):  
Hongguang Jin ◽  
Lin Gao ◽  
Wei Han ◽  
Jinyue Yan

Reducing the energy penalty for CO2 Capture and Storage (CCS) is a challenge. Most of previous studies for CCS have been focused on power generation system. When CCS is included in the polygeneration system, a new methodology that jointly considering CCS and liquid fuel production should be introduced. In this paper, we proposed a new approach integrating CCS into a coal-based polygeneration system for power generation and methanol production: the syngas produced from the coal gasifier, without adjusting the composition (CO/H2 ratio) by shift reaction, is used to synthesis methanol directly. Moreover, the partial-recycle scheme, in which a part of unreacted gas is recycled back to the synthesis reactor, is adopted in the synthesis unit. Another part of unreacted gas is treated to remove CO2, and then is used as clean fuel for the power generation subsystem. Compared to the conventional CCS approaches adopted by the power generation systems, the new approach is mainly characterized by two features: firstly, the combination of the removal of the composition adjustment process and a partial-recycle scheme can not only reduces the energy consumption for methanol production, but also obtains a high concentration of COX (CO and CO2) in the unreacted gas; secondly, the CO2 is captured from the unreacted gas, instead of from syngas generated by the gasifier. Due to increment of COX concentration, the new approach can reduce the energy consumption for CO2 capture compared to conventional pre-combustion CO2 capture. In the conventional coal based IGCC systems, the thermal efficiency is around 34-36% for a case with CO2 capture and around 44% for a case without CO2 capture. However, with the innovative approach integrating CCS, the polygeneration system in this paper can achieve the equivalent thermal efficiency as high as 47% when 72% of CO2 is recovered, which provides a significant improvement for CO2 capture. It’s clearly that the new approach can increase the thermal efficiency, instead of incurring an energy penalty for CO2 capture. The results achieved in this study have provided a new methodology integrating CO2 capture into the polygeneration system, which reveals the different characteristics compared to power-generation system that has been overlooked by the previous studies.

Author(s):  
Hideto Moritsuka

In order to estimate the possibility to improve thermal efficiency of power generation use gas turbine combined cycle power generation system, benefits of employing the advanced gas turbine technologies proposed here have been made clear based on the recently developed 1500C-class steam cooling gas turbine and 1300C-class reheat cycle gas turbine combined cycle power generation systems. In addition, methane reforming cooling method and NO reducing catalytic reheater are proposed. Based on these findings, the Maximized efficiency Optimized Reheat cycle Innovative Gas Turbine Combined cycle (MORITC) Power Generation System with the most effective combination of advanced technologies and the new devices have been proposed. In case of the proposed reheat cycle gas turbine with pressure ratio being 55, the high pressure turbine inlet temperature being 1700C, the low pressure turbine inlet temperature being 800C, combined with the ultra super critical pressure, double reheat type heat recovery Rankine cycle, the thermal efficiency of combined cycle are expected approximately 66.7% (LHV, generator end).


2020 ◽  
Vol 1675 ◽  
pp. 012121
Author(s):  
A F Ryzhkov ◽  
T F Bogatova ◽  
G E Maslennikov ◽  
P V Osipov

Author(s):  
Tao Han ◽  
Hui Hong ◽  
Hongguang Jin ◽  
Chuanqiang Zhang

Dimethyl ether (DME) is a promising alternative fuel, but direct combustion of DME will result in extra energy penalty for CO2 separation. In this paper, an advanced power-generation system with CO2 recovery integrating DME-fueled chemical-looping combustion is proposed. In the reduction reactor, DME is oxidized by Fe2O3 into CO2 and H2O, and Fe2O3 is reduced into FeO simultaneously. Since the endothermic reduction of Fe2O3 with DME requires relatively low-grade thermal energy around 180°C, waste heat is used to provide the reaction heat. FeO is oxidized into Fe2O3 by air in the oxidation reactor, producing high-temperature flue gas to generate electricity through a thermal cycle. The gas production from the fuel reactor only consists of CO2 and H2O, so CO2 can be easily separated through condensing with no extra energy penalty. As a result, the thermal efficiency could be expected to be 58.6% at a turbine inlet temperature of 1288°C. Additionally, experiments on DME-fueled Chemical-looping combustion are carried out to verify the feasibility of the core process. This proposed system may provide a new approach for high efficient use of DME in the industrial fields, and offer a possibility of chemical-looping combustion with inherent CO2 capture for the alternative fuel.


Author(s):  
Na Zhang ◽  
Noam Lior ◽  
Chending Luo

This paper adds an exergy analysis of the novel SOLRGT solar-assisted power generation system proposed and described in detail in Part I of this study (Zhang and Lior, 2012, “Use of Low/Mid-Temperature Solar Heat for Thermochemical Upgrading of Energy, Part I: Application to a Novel Chemically-Recuperated Gas-Turbine Power Generation (SOLRGT) System,” ASME J. Eng. Gas Turbines Power, Accepted. SOLRGT is an intercooled chemically recuperated gas turbine cycle, in which solar thermal energy collected at about 220 °C is first transformed into the latent heat of water vapor supplied to a reformer, and then via the reforming reactions to the produced syngas chemical exergy. This integration of this concept of indirect thermochemical upgrading of low/mid temperature solar heat has resulted in a high efficiency novel hybrid power generation system. In Part I it was shown that the solar-driven steam production helps improve both the chemical and thermal recuperation in the system, with both processes contributing to the overall efficiency improvement of about 5.6%-points above that of a comparable intercooled CRGT system without solar assist, and nearly 20% reduction of CO2 emissions. An economic analysis of SOLRGT predicted that the generated electricity cost by the system is about 0.06 $/kWh, and the payback period about 10.7 years (including two years of construction). The exergy analysis of SOLRGT in this (Part II) paper identified that the main potentials for efficiency improvement is in the combustion, the turbine and compressors, and in the flue gas due to its large water vapor content. Guided by this, an improved solar-assisted zero-emissions power generation system configuration with oxy-fuel combustion and CO2 capture, ZE-SOLRGT, is hereby proposed, in which the exergy losses associated with combustion and heat dumping to the environment are reduced significantly. The analysis predicts that this novel system with an 18% solar heat input share has a thermal efficiency of 50.7% and exergy efficiency of 53%, with ∼100% CO2 capture.


2011 ◽  
Vol 133 (1) ◽  
Author(s):  
Tao Han ◽  
Hui Hong ◽  
Hongguang Jin ◽  
Chuanqiang Zhang

Dimethyl ether (DME) is a promising alternative fuel, but direct combustion of DME will result in extra energy penalty for CO2 separation. In this paper, an advanced power-generation system with CO2 recovery integrating DME fueled chemical-looping combustion is proposed. In the reduction reactor, DME is oxidized by Fe2O3 into CO2 and H2O, and Fe2O3 is reduced into FeO simultaneously. Since the endothermic reduction in Fe2O3 with DME requires relatively low-grade thermal energy around 180°C, waste heat is used to provide the reaction heat. FeO is oxidized into Fe2O3 by air in the oxidation reactor, producing high-temperature flue gas to generate electricity through a thermal cycle. The gas production from the fuel reactor only consists of CO2 and H2O, so CO2 can be easily separated through condensing with no extra energy penalty. As a result, the thermal efficiency could be expected to be 58.6% at a turbine inlet temperature of 1288°C. This proposed system may provide a new approach for high efficient use of DME in the industrial fields, and offer a possibility of chemical-looping combustion with inherent CO2 capture for the alternative fuel.


Author(s):  
Naoyuki Nagafuchi ◽  
Nariyoshi Kobayashi ◽  
Motoaki Utamura

This paper proposes an application of the simple cycle adjustable speed gas turbine power generation system for use as an independent power producer combined with a heavy duty gas turbine (output power 25MW, turbine inlet temperature 1400K class) having adjustable speed generators. Comparison results for a method to improve the thermal efficiency of this system using low NOx combustors are obtained. The results of a performance study of the static characteristics for the system using forced IGV (Inlet Guide Vane) opening control during partial load adjustable speed operation, show an effect on thermal efficiency improvement. Comparison of the dynamic characteristics for the system using existing controllers and the system using the proposed controllers shows, the latter is able to restrain fluctuation of the fuel to air mass ratio during a transient changing the target rotational speed, under restricted operating conditions.


Sign in / Sign up

Export Citation Format

Share Document