polygeneration system
Recently Published Documents


TOTAL DOCUMENTS

156
(FIVE YEARS 67)

H-INDEX

28
(FIVE YEARS 6)

2022 ◽  
Vol 9 ◽  
Author(s):  
Yu-Jin Kim ◽  
Libing Yang ◽  
Evgueniy Entchev ◽  
Soolyeon Cho ◽  
Eun-Chul Kang ◽  
...  

In this paper, the development and demonstration of a hybrid solar geothermal heat pump polygeneration system is presented. The poly-generation system has been designed, modeled, and simulated in TRNSYS software environment. Its performance was assessed followed by installation and demonstration at a demo site in Cheongju, Korea. The space heating and cooling load of the building is 13.8 kW in heating mode at an ambient temperature of −10.3°C and 10.6 kW in cooling mode at an ambient temperature of 32.3°C. The simulation data were compared with the field demo data using ISO 13256. The results showed that the model data compare well with the demo data both in heating and cooling modes of operation. At a source temperature of 16.7°C, the heat pump lab performance data-based COPc shows 9.9, while demonstration COPc shows 10.3, thus, representing 4.3% relative error. The heat pump source temperature decreased by 4.0°C from 20.9°C to 16.9°C due to ground heat exchanger coupling and resulted in a COPc increase by 13.3% from 8.5 to 9.8. When compared at the design conditions (outside temperature of 32.3°C), the TRSNYS model overestimated the demonstration site data by 12%, 9.3 vs. 8.1 kW with power consumption of 3.1 vs. 2.2 kW. The hybrid polygeneration system power consumption decreased by 1.2 kW when ambient temperature decreased from 35°C to 25°C.


2022 ◽  
Vol 252 ◽  
pp. 115136
Author(s):  
Nikolaos Georgousis ◽  
Panagiotis Lykas ◽  
Evangelos Bellos ◽  
Christos Tzivanidis

2022 ◽  
Vol 37 (3) ◽  
pp. 1
Author(s):  
Khodadoost Rostami Zadeh ◽  
Seyed Ali Agha Mirjalily ◽  
Seyed Amir Abbas Oloomi ◽  
Gholamreza Salehi ◽  
Mohammad Hasan Khoshgoftar Manesh

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7636
Author(s):  
Ana Picallo-Perez ◽  
Jose Maria Sala-Lizarraga

This work defines and analyzes the performance of a polygeneration system in five different locations in Spain to maintain the thermal comfort and air quality of an office building. The facility is based on a chiller and a CHP engine with PV panels that provide almost all the electricity demand of the chiller. According to the energy performance analysis results, the installation working in Bilbao is a full polygeneration system since no electricity needs to be imported from the grid in summer. To quantify the energy savings related to a separated production facility, polygeneration indicators (percentage of savings PES/PExS and equivalent electric efficiency EEE/EExE) have been calculated in energy and exergy terms. The main motivation for using exergy is based on the ambiguity that can arise from the point of view of the First Law. As expected, the exergetic indicators have lower values than the energetic ones. In addition, an in-depth analysis was conducted for the air-handling unit components. The study shows the behavior of components over the year and the efficiency values from both an energy and exergy point of view. From these facts, the need arises to develop methodologies based on exergy.


Sign in / Sign up

Export Citation Format

Share Document