scholarly journals Algorithm for detecting a change in the motion mode of an object moving along a complex trajectory

2021 ◽  
Vol 1745 (1) ◽  
pp. 012115
Author(s):  
A V Golubkov ◽  
A V Tsyganov ◽  
I O Petrishchev
Author(s):  
Aleksey V. Golubkov ◽  

The article deals with the solution to the problem of determining the motion mode of an object along a complex trajectory. A hybrid stochastic model is used to describe a complex trajectory. The solution of the problem is based on the application of a sequential decision rule about the choice at an unknown time of the hypothesis about the current mode of motion, with a limited size of the bank of competing Kalman filters. An algorithm is constructed for calculating the average size of the Kalman filter bank in the case of M-possible motion modes. The algorithm is developed in a general form, therefore, it can be used not only for the four types of object motion models considered in this paper, but also for any linear discrete-time models with Gaussian noise presented by equations in the state space. The algorithm for a priori estimation of the average size of a bank of competing Kalman filters for M-possible modes of motion is implemented in MATLAB, the results of computer simulation are presented.


Magnanimity is a virtue that has led many lives. Foregrounded early on by Plato as the philosophical virtue par excellence, it became one of the crown jewels in Aristotle’s account of human excellence and was accorded an equally salient place by other ancient thinkers. One of the most distinctive elements of the ancient tradition to filter into the medieval Islamic and Christian worlds, it sparked important intellectual engagements there and went on to carve deep tracks through several later philosophies that inherited from this tradition. Under changing names, under reworked forms, it continued to breathe in the thought of Descartes and Hume, Kant and Nietzsche, and their successors. Its many lives have been joined by important continuities. Yet they have also been fragmented by discontinuities—discontinuities reflecting larger shifts in ethical perspectives and competing answers to questions about the nature of the good life, the moral nature of human beings, and their relationship to the social and natural world they inhabit. They have also been punctuated by moments of controversy in which the greatness of this vision of human greatness has itself been called into doubt. This volume provides a window to the complex trajectory of a virtue whose glitter has at times been as heady as it has been divisive. By exploring the many lives it has lived, we will be in a better position to decide whether and why this is a virtue we might still want to make central to our own ethical lives.


Author(s):  
Qiang Cheng ◽  
Baobao Qi ◽  
Hongyan Chu ◽  
Ziling Zhang ◽  
Zhifeng Liu ◽  
...  

The combination of sliding/rolling motion can influence the degree of precision degradation of ball screw. Precision degradation modeling and factors analysis can reveal the evolution law of ball screw precision. This paper presents a precision degradation model for factors analysis influencing precision due to mixed sliding-rolling motion. The precision loss model was verified through the comparison of theoretical models and experimental tests. The precision degradation due to rolling motion between the ball and raceway accounted for 29.09% of the screw precision loss due to sliding motion. Additionally, the total precision degradation due to rolling motion accounted for 21.03% of the total sliding precision loss of the screw and nut, and 17.38% of the overall ball screw precision loss under mixed sliding-rolling motion. In addition, the effects of operating conditions and structural parameters on precision loss were analyzed. The sensitivity coefficients of factors influencing were used to quantitatively describe impact degree on precision degradation.


Author(s):  
Guangbo Hao ◽  
Xianwen Kong ◽  
Xiuyun He

A planar reconfigurable linear (also rectilinear) rigid-body motion linkage (RLRBML) with two operation modes, that is, linear rigid-body motion mode and lockup mode, is presented using only R (revolute) joints. The RLRBML does not require disassembly and external intervention to implement multi-task requirements. It is created via combining a Robert’s linkage and a double parallelogram linkage (with equal lengths of rocker links) arranged in parallel, which can convert a limited circular motion to a linear rigid-body motion without any reference guide way. This linear rigid-body motion is achieved since the double parallelogram linkage can guarantee the translation of the motion stage, and Robert’s linkage ensures the approximate straight line motion of its pivot joint connecting to the double parallelogram linkage. This novel RLRBML is under the linear rigid-body motion mode if the four rocker links in the double parallelogram linkage are not parallel. The motion stage is in the lockup mode if all of the four rocker links in the double parallelogram linkage are kept parallel in a tilted position (but the inner/outer two rocker links are still parallel). In the lockup mode, the motion stage of the RLRBML is prohibited from moving even under power off, but the double parallelogram linkage is still moveable for its own rotation application. It is noted that further RLRBMLs can be obtained from the above RLRBML by replacing Robert’s linkage with any other straight line motion linkage (such as Watt’s linkage). Additionally, a compact RLRBML and two single-mode linear rigid-body motion linkages are presented.


Author(s):  
Xin-Jun Liu ◽  
Zhao Gong ◽  
Fugui Xie ◽  
Shuzhan Shentu

In this paper, a mobile robot named VicRoB with 6 degrees of freedom (DOFs) driven by three tracked vehicles is designed and analyzed. The robot employs a 3-PPSR parallel configuration. The scheme of the mechanism and the inverse kinematic solution are given. A path planning method of a single tracked vehicle and a coordinated motion planning of three tracked vehicles are proposed. The mechanical structure and the electrical architecture of VicRoB prototype are illustrated. VicRoB can achieve the point-to-point motion mode and the continuous motion mode with employing the motion planning method. The orientation precision of VicRoB is measured in a series of motion experiments, which verifies the feasibility of the motion planning method. This work provides a kinematic basis for the orientation closed loop control of VicRoB whether it works on flat or rough road.


Author(s):  
Jieyu Wang ◽  
Xianwen Kong

A novel construction method is proposed to construct multimode deployable polyhedron mechanisms (DPMs) using symmetric spatial RRR compositional units, a serial kinematic chain in which the axes of the first and the third revolute (R) joints are perpendicular to the axis of the second R joint. Single-loop deployable linkages are first constructed using RRR units and are further assembled into polyhedron mechanisms by connecting single-loop kinematic chains using RRR units. The proposed mechanisms are over-constrained and can be deployed through two approaches. The prism mechanism constructed using two Bricard linkages and six RRR limbs has one degree-of-freedom (DOF). When removing three of the RRR limbs, the mechanism obtains one additional 1-DOF motion mode. The DPMs based on 8R and 10R linkages also have multiple modes, and several mechanisms are variable-DOF mechanisms. The DPMs can switch among different motion modes through transition positions. Prototypes are 3D-printed to verify the feasibility of the mechanisms.


Author(s):  
F.A. Kipriyanov ◽  
◽  
Yu.A. Plotnikova ◽  

he use of vibration transport in agricultural production plays a very significant part. Vibratory conveyors have the variety of advantages over traditional transporting ma-chines such as auger and belt type conveyors used at agri-cultural enterprises for transporting mainly loose and granular materials. A rather low wear coefficient of trans-porting body itself - a conveying trough of a vibration-transporting machine may be referred to the advantages, besides, in some constructions of vibration-transporting machines the amount of friction couples is reduced to a minimum. In the design of constructions of vibration-transporting machines a question arises about the determi-nation of motion mode of particles of the transporting mate-rial. Thus, the detection of a predominant component of motion will allow forecasting the wear rate of a transporting surface and the possibility of enlarging the field of techno-logical use of vibration-transporting machines. During the research process for the determination of motion mode of grain material the shape of which was close to spheroid and ellipsoid, the method of mathematical modeling was applied. The system of differential equations of second order was compiled and solved. In the equations the influ-ence of vibration of a transporting surface on the motion of an elliptically shaped body was taken into account. To solve the system the classical method - Runge-Kutta method of the fourth order was used. The program devel-oped in programming language Python allowed identifying the motion mode of the bodies of spheroidal and ellipsoidal shapes on a vibrating surface. As the result, it was deter-mined that the motion of a body of a spheroidal shape on a vibrating surface was possible due to rolling, and the mo-tion of a body of an ellipsoidal shape was achieved be-cause of its sliding on the surface, what follows from wan-ing rotating movements. The suggested method for the determination of motion mode of a body on a vibrating sur-face is rather flexible and may be applied in calculation for larger bodies in comparison with grain seeds.


Sign in / Sign up

Export Citation Format

Share Document