scholarly journals Small-scale Pedestrian Detection Method based on Attention Mechanism and Adaptive Feature Fusion

2021 ◽  
Vol 2035 (1) ◽  
pp. 012023
Author(s):  
Yuhao You ◽  
Houjin Chen ◽  
Yanfeng Li ◽  
Minjun Wang ◽  
Jinlei Zhu
2022 ◽  
Vol 11 (01) ◽  
pp. 22-26
Author(s):  
Hui Xiang ◽  
Junyan Han ◽  
Hanqing Wang ◽  
Hao Li ◽  
Shangqing Li ◽  
...  

Aiming at the problems of low detection accuracy and poor recognition effect of small-scale targets in traditional vehicle and pedestrian detection methods, a vehicle and pedestrian detection method based on improved YOLOv4-Tiny is proposed. On the basis of YOLOv4-Tiny, the 8-fold down sampling feature layer was added for feature fusion, the PANet structure was used to perform bidirectional fusion for the deep and shallow features from the output feature layer of backbone network, and the detection head for small targets was added. The results show that the mean average precision of the improved method has reached 85.93%, and the detection performance is similar to that of YOLOv4. Compared with the YOLOv4-Tiny, the mean average precision of the improved method is increased by 24.45%, and the detection speed reaches 67.83FPS, which means that the detection effect is significantly improved and can meet the real-time requirements.


2021 ◽  
Vol 11 (19) ◽  
pp. 9202
Author(s):  
Daxue Liu ◽  
Kai Zang ◽  
Jifeng Shen

In this paper, a shallow–deep feature fusion (SDFF) method is developed for pedestrian detection. Firstly, we propose a shallow feature-based method under the ACF framework of pedestrian detection. More precisely, improved Haar-like templates with Local FDA learning are used to filter the channel maps of ACF such that these Haar-like features are able to improve the discriminative power and therefore enhance the detection performance. The proposed shallow feature is also referred to as weighted subset-haar-like feature. It is efficient in pedestrian detection with a high recall rate and precise localization. Secondly, the proposed shallow feature-based detection method operates as a region proposal. A classifier equipped with ResNet is then used to refine the region proposals to judge whether each region contains a pedestrian or not. The extensive experiments evaluated on INRIA, Caltech, and TUD-Brussel datasets show that SDFF is an effective and efficient method for pedestrian detection.


2021 ◽  
Author(s):  
Yanjiao Yang ◽  
Danhong Jin ◽  
Zhenqiang Yuan ◽  
Jiachen Han

2021 ◽  
Vol 13 (18) ◽  
pp. 3776
Author(s):  
Linlin Zhu ◽  
Xun Geng ◽  
Zheng Li ◽  
Chun Liu

It is of great significance to apply the object detection methods to automatically detect boulders from planetary images and analyze their distribution. This contributes to the selection of candidate landing sites and the understanding of the geological processes. This paper improves the state-of-the-art object detection method of YOLOv5 with attention mechanism and designs a pyramid based approach to detect boulders from planetary images. A new feature fusion layer has been designed to capture more shallow features of the small boulders. The attention modules implemented by combining the convolutional block attention module (CBAM) and efficient channel attention network (ECA-Net) are also added into YOLOv5 to highlight the information that contribute to boulder detection. Based on the Pascal Visual Object Classes 2007 (VOC2007) dataset which is widely used for object detection evaluations and the boulder dataset that we constructed from the images of Bennu asteroid, the evaluation results have shown that the improvements have increased the performance of YOLOv5 by 3.4% in precision. With the improved YOLOv5 detection method, the pyramid based approach extracts several layers of images with different resolutions from the large planetary images and detects boulders of different scales from different layers. We have also applied the proposed approach to detect the boulders on Bennu asteroid. The distribution of the boulders on Bennu asteroid has been analyzed and presented.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhiwei Cao ◽  
Huihua Yang ◽  
Weijin Xu ◽  
Juan Zhao ◽  
Lingqiao Li ◽  
...  

Pedestrian detection based on visual sensors has made significant progress, in which region proposal is the key step. There are two mainstream methods to generate region proposals: anchor-based and anchor-free. However, anchor-based methods need more hyperparameters related to anchors for training compared with anchor-free methods. In this paper, we propose a novel multiscale anchor-free (MSAF) region proposal network to obtain proposals, especially for small-scale pedestrians. It usually has several branches to predict proposals and assigns ground truth according to the height of pedestrian. Each branch consists of two components: one is feature extraction, and the other is detection head. Adapted channel feature fusion (ACFF) is proposed to select features at different levels of the backbone to effectively extract features. The detection head is used to predict the pedestrian center location, center offsets, and height to get bounding boxes. With our classifier, the detection performance can be further improved, especially for small-scale pedestrians. The experiments on the Caltech and CityPersons demonstrate that the MSAF can significantly boost the pedestrian detection performance and the log-average miss rate (MR) on the reasonable setting is 3.97% and 9.5%, respectively. If proposals are reclassified with our classifier, MR is 3.38% and 8.4%. The detection performance can be further improved, especially for small-scale pedestrians.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1240
Author(s):  
Yang Liu ◽  
Hailong Su ◽  
Cao Zeng ◽  
Xiaoli Li

In complex scenes, it is a huge challenge to accurately detect motion-blurred, tiny, and dense objects in the thermal infrared images. To solve this problem, robust thermal infrared vehicle and pedestrian detection method is proposed in this paper. An important weight parameter β is first proposed to reconstruct the loss function of the feature selective anchor-free (FSAF) module in its online feature selection process, and the FSAF module is optimized to enhance the detection performance of motion-blurred objects. The proposal of parameter β provides an effective solution to the challenge of motion-blurred object detection. Then, the optimized anchor-free branches of the FSAF module are plugged into the YOLOv3 single-shot detector and work jointly with the anchor-based branches of the YOLOv3 detector in both training and inference, which efficiently improves the detection precision of the detector for tiny and dense objects. Experimental results show that the method proposed is superior to other typical thermal infrared vehicle and pedestrian detection algorithms due to 72.2% mean average precision (mAP).


Sign in / Sign up

Export Citation Format

Share Document