scholarly journals Research and development of high efficiency low emission combined cycle power plant arrangements

2021 ◽  
Vol 2053 (1) ◽  
pp. 012005
Author(s):  
I I Komarov ◽  
O V Zlyvko ◽  
A N Vegera ◽  
B A Makhmutov ◽  
I A Shcherbatov

Abstract Coal-fired steam turbine thermal power plants produce a large part of electricity. These power plants usually have low efficiency and high carbon dioxide emission. An application of combined cycle power plants with coal gasification equipped with carbon capture and storage systems may increase the efficiency and decrease the harmful emission. This paper describes investigation of the oxidizer type in the integrated gasification combined cycle combustion chamber and its influence upon the energy and environmental performance. The integrated gasification combined cycle and oxy-fuel combustion technology allow the carbon dioxide capture and storage losses 58% smaller than the traditional air combustion one. The IGCC with air combustion without and with carbon dioxide capture and storage has 53.54 and 46.61% and with oxy-fuel combustion has 34.94 and 32.67% net efficiency. Together with this the CO2 emission drops down from 89.9 to 10.6 gm/kWh. The integrated coal gasification combined cycle with air oxidizer has the best net efficiency.

Author(s):  
Peng Pei ◽  
Manohar Kulkarni

Integrated Gasification Combined Cycle (IGCC) is believed to be one of the most promising technologies to offer electricity and other de-carbon fuels with carbon capture requirement as well as to meet other emission regulations at a relatively low cost. As one of the most important parts, different gasification technologies can greatly influence the performance of the system. This paper develops a model to examine the feasibilities and advantages of using Ultra Superheated Steam (USS) gasification technology in IGCC power plant with carbon dioxide capture and storage (CCS). USS gasification technology converts coal into syngas by the endothermic steam reforming reaction, and the heat required for this reaction is provided by the sensible heat in the ultra superheated steam. A burner utilizes synthetic air (21% O2 and 79% H2O) to burn fuel gas to produce the USS flame for the gasification process. The syngas generated from USS gasification has a higher hydrogen fraction (more than 50%) then other gasification processes. This high ratio of hydrogen is considered to be desired for a “capture-ready” IGCC plant. After gas cleanup and water gas shift reaction, the syngas goes to the Selexol process for carbon dioxide removal. Detailed calculations and analysis are performed to test the performance of USS gasification technology used in IGCC generation systems. Final results such as net output, efficiency penalty for CO2 capture part, and net thermal efficiency are calculated and compared when three different coal types are used. This paper uses published data of USS gasification from previous research at the University of North Dakota. The model also tries to treat the IGCC with carbon dioxide capture system as a whole thermal system, the superheated steam used in USS gasification can be provided by extracting steam from the lower pressure turbine in the Rankine Cycle. The model will make reasonable use of various waste energies and steams for both mechanical and chemical processes to improve the performance of the plant, and incorporate CO2 capture system into the design concept of the power plant.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hashmi SAM ◽  

The main idea of this research paper is to provide an innovative way of capturing carbon dioxide emissions from a coal powered power plant. This research paper discusses the design and modeling of a carbon capturing membrane which is being used in an IGCC power plant to capture carbon dioxide from its exhaust gases. The modeling and design of the membrane is done using CFD software namely Ansys workbench. The design and modeling is done using two simulations, one describes the design and structure and the second one demonstrates the working mechanism of the membrane. This paper also briefly discusses IGCC which is environmentally benign compared to traditional pulverized coal-fired power plants, and economically feasible compared to the Natural Gas Combine Cycle (NGCC). IGCC power plant is more diverse and offers flexibility in fuel utility. This paper also incorporates a PFD of integrated gasification power plant with the carbon capturing membrane unit integrated in it. Index Terms: Integrated gasification combined cycle power plant, Carbon capture and storage, Gas permeating membrane, CFD based design of gas permeating membrane.


1980 ◽  
Author(s):  
J. W. Larson

The idea of a combined cycle power plant integrated with a coal gasification process has attracted broad interest in recent years. This interest is based on unique attributes of this concept which include potentially low pollutant emissions, low heat rate and competitive economics as compared to conventional steam plants with stack gas scrubbing. Results from a survey of technical literature containing performance and economic predictions have been compiled for comparison and evaluation of this new technique. These performance and economic results indicate good promise for near-term commercialization of an integrated gasification combined cycle power plant using current gas turbine firing temperatures. Also, these data show that advancements in turbine firing temperature are expected to provide sufficiently favorable economics for the concept to penetrate the market now held by conventional steam power plants.


Author(s):  
Michele Vascellari ◽  
Daniele Cocco ◽  
Giorgio Cau

Two power generation systems with pre-combustion CO2 capture fuelled with hydrogen from coal gasification are analyzed and compared from a thermodynamic and economic standpoint. The first solution, referred as Integrated Gasification Combined Cycle with CO2 Removal (IGCC-CR), is fuelled with hydrogen produced by the integrated gasification section. The second, referred as Integrated Gasification Hydrogen Cycle (IGHC), is based on the oxycombustion of hydrogen, producing steam that expands through an advanced high temperature steam turbine. The two H2 production sections are similar for both power plants, some minor modifications having been made to achieve better integration with the corresponding power sections. System performance is investigated using coherent assumptions to enable comparative analysis on the same basis. The plants have overall efficiencies of around 39.8% for IGCC-CR and 40.6% for IGHC, slightly lower than conventional IGCCs (without CO2 capture) with a CO2 removal efficiencies of 91% and 100% respectively. Lastly a preliminary economic analysis shows an increase in the cost of electricity compared to conventional IGCCs of about 44% for IGCC-CR and 50% IGHC.


Author(s):  
Peng Pei ◽  
Manohar Kulkarni

Integrated Gasification Combined Cycle (IGCC) is believed to be one of the most promising technologies to offer electricity and other de-carbon fuels with carbon capture requirement at a relatively low cost. With the process of carbon dioxide capture, it can also actually meet strict regulations for other pollutants emission. However, the performances can vary depending on what kinds of technologies or processes are used. This paper has developed a model and calculated by using Engineering Equation Solver (EES) program to determine and compare different available technologies and processes. There are four main components in the model: Gasification Island; Gas Cleanup Island; Carbon Dioxide Capture Island and Power Island. Among them, the different options of Gasification Island; and Carbon Dioxide Capture Island are expected to be the most effective factors to influence the performance of the plant. Therefore, different gasification processes are examined in this paper, including Shell, GE (Texaco) and Lurgi. The carbon dioxide capture processes are based on SELEXOL, a physical absorption process, because of the high partial pressure of carbon dioxide in the syngas. A process called “double-absorption” is used for capturing sulfur compounds and carbon dioxide. This paper calculated and compared the net outputs, efficiency penalties for CO2 capture part, and net plant efficiencies for different technologies and processes by using EES program. This model tries to treat the IGCC with carbon dioxide capture part as a whole thermal system, instead of just looking at the capture system alone. Different gasification technologies mentioned above will result in various paths and efficiencies of using steam and waste energy in the system. It will make reasonable use of various waste energies and steams for both mechanical and chemical processes to improve the performance of the plant, and incorporate a CO2 capture system into the design concept of the power plant.


Sign in / Sign up

Export Citation Format

Share Document