Comparative Analysis of Hydrogen Combustion Power Plants Integrated With Coal Gasification and CO2 Removal

Author(s):  
Michele Vascellari ◽  
Daniele Cocco ◽  
Giorgio Cau

Two power generation systems with pre-combustion CO2 capture fuelled with hydrogen from coal gasification are analyzed and compared from a thermodynamic and economic standpoint. The first solution, referred as Integrated Gasification Combined Cycle with CO2 Removal (IGCC-CR), is fuelled with hydrogen produced by the integrated gasification section. The second, referred as Integrated Gasification Hydrogen Cycle (IGHC), is based on the oxycombustion of hydrogen, producing steam that expands through an advanced high temperature steam turbine. The two H2 production sections are similar for both power plants, some minor modifications having been made to achieve better integration with the corresponding power sections. System performance is investigated using coherent assumptions to enable comparative analysis on the same basis. The plants have overall efficiencies of around 39.8% for IGCC-CR and 40.6% for IGHC, slightly lower than conventional IGCCs (without CO2 capture) with a CO2 removal efficiencies of 91% and 100% respectively. Lastly a preliminary economic analysis shows an increase in the cost of electricity compared to conventional IGCCs of about 44% for IGCC-CR and 50% IGHC.

Author(s):  
Eric Liese

This paper examines the arrangement of a solid oxide fuel cell (SOFC) within a coal gasification cycle, this combination generally being called an integrated gasification fuel cell cycle. This work relies on a previous study performed by the National Energy Technology Laboratory (NETL) that details thermodynamic simulations of integrated gasification combined cycle (IGCC) systems and considers various gasifier types and includes cases for 90% CO2 capture (2007, “Cost and Performance Baseline for Fossil Energy Plants, Vol. 1: Bituminous Coal and Natural Gas to Electricity,” National Energy Technology Laboratory Report No. DOE/NETL-2007/1281). All systems in this study assume a Conoco Philips gasifier and cold-gas clean up conditions for the coal gasification system (Cases 3 and 4 in the NETL IGCC report). Four system arrangements, cases, are examined. Cases 1 and 2 remove the CO2 after the SOFC anode. Case 3 assumes steam addition, a water-gas-shift (WGS) catalyst, and a Selexol process to remove the CO2 in the gas cleanup section, sending a hydrogen-rich gas to the fuel cell anode. Case 4 assumes Selexol in the cold-gas cleanup section as in Case 3; however, there is no steam addition, and the WGS takes places in the SOFC and after the anode. Results demonstrate significant efficiency advantages compared with IGCC with CO2 capture. The hydrogen-rich case (Case 3) has better net electric efficiency compared with typical postanode CO2 capture cases (Cases 1 and 2), with a simpler arrangement but at a lower SOFC power density, or a lower efficiency at the same power density. Case 4 gives an efficiency similar to Case 3 but also at a lower SOFC power density. Carbon deposition concerns are also discussed.


2021 ◽  
Vol 2053 (1) ◽  
pp. 012005
Author(s):  
I I Komarov ◽  
O V Zlyvko ◽  
A N Vegera ◽  
B A Makhmutov ◽  
I A Shcherbatov

Abstract Coal-fired steam turbine thermal power plants produce a large part of electricity. These power plants usually have low efficiency and high carbon dioxide emission. An application of combined cycle power plants with coal gasification equipped with carbon capture and storage systems may increase the efficiency and decrease the harmful emission. This paper describes investigation of the oxidizer type in the integrated gasification combined cycle combustion chamber and its influence upon the energy and environmental performance. The integrated gasification combined cycle and oxy-fuel combustion technology allow the carbon dioxide capture and storage losses 58% smaller than the traditional air combustion one. The IGCC with air combustion without and with carbon dioxide capture and storage has 53.54 and 46.61% and with oxy-fuel combustion has 34.94 and 32.67% net efficiency. Together with this the CO2 emission drops down from 89.9 to 10.6 gm/kWh. The integrated coal gasification combined cycle with air oxidizer has the best net efficiency.


1980 ◽  
Author(s):  
J. W. Larson

The idea of a combined cycle power plant integrated with a coal gasification process has attracted broad interest in recent years. This interest is based on unique attributes of this concept which include potentially low pollutant emissions, low heat rate and competitive economics as compared to conventional steam plants with stack gas scrubbing. Results from a survey of technical literature containing performance and economic predictions have been compiled for comparison and evaluation of this new technique. These performance and economic results indicate good promise for near-term commercialization of an integrated gasification combined cycle power plant using current gas turbine firing temperatures. Also, these data show that advancements in turbine firing temperature are expected to provide sufficiently favorable economics for the concept to penetrate the market now held by conventional steam power plants.


Author(s):  
Jeffrey N. Phillips ◽  
George S. Booras ◽  
Jose Marasigan

Integrated gasification combined-cycle (IGCC) power plants offer a way to use solid or heavy liquid hydrocarbons, such as asphalt, in high-efficiency combined-cycle power plants. This paper reviews the history of IGCC power plants from the first unit, which was built in Germany in the 1970s, to the current wave of IGCCs being deployed in the 2010s. It draws heavily from the Electric Power Research Institute (EPRI) archive of information about IGCCs, which chronicles 40 years of nurturing the development of a number of coal gasification technologies. Insights from the operating experiences of earlier IGCCs will be examined, a comprehensive table listing all IGCCs built to date is provided and photos from many of the plants are included. The paper concludes with some recommendations for research and development which could set the direction for future applications of IGCC technologies.


2015 ◽  
Vol 3 (1) ◽  
pp. 178
Author(s):  
Mohsen Darabi ◽  
Mohammad Mohammadiun ◽  
Hamid Mohammadiun ◽  
Saeed Mortazavi ◽  
Mostafa Montazeri

<p>Electricity is an indispensable amenity in present society. Among all those energy resources, coal is readily available all over the world and has risen only moderately in price compared with other fuel sources. As a result, coal-fired power plant remains to be a fundamental element of the world's energy supply. IGCC, abbreviation of Integrated Gasification Combined Cycle, is one of the primary designs for the power-generation market from coal-gasification. This work presents a in the proposed process, diluted hydrogen is combusted in a gas turbine. Heat integration is central to the design. Thus far, the SGR process and the HGD unit are not commercially available. To establish a benchmark. Some thermodynamic inefficiencies were found to shift from the gas turbine to the steam cycle and redox system, while the net efficiency remained almost the same. A process simulation was undertaken, using Aspen Plus and the engineering equation solver (EES).The The model has been developed using Aspen Hysys® and Aspen Plus®. Parts of it have been developed in Matlab, which is mainly used for artificial neural network (ANN) training and parameters estimation. Predicted results of clean gas composition and generated power present a good agreement with industrial data. This study is aimed at obtaining a support tool for optimal solutions assessment of different gasification plant configurations, under different input data sets.</p>


Author(s):  
M. Nakhamkin ◽  
M. Patel ◽  
L. Andersson ◽  
P. Abitante ◽  
A. Cohn

This paper presents the results of a project targeted at developing cost effective power plant concept with integrated Coal Gasification System (CGS) and with Compressed Air Energy Storage (CAES) plant. The developed concepts, denoted as CGS/CAES, provide for continuous operation of CGS and the reheat turboexpander train which are high temperature components, thus improving their operation and extending life resource. A parametric thermodynamic analysis is performed for several CGS/CAES concepts differentiated by their turbomachinery parameters, CGS arrangements, operating cycles, and hours of daily generation. A qualitative cost estimate is made using a variety of sources including published EPRI reports and extensive in-house cost data. A technical and cost comparison is made to the Integrated Gasification Combined Cycle (IGCC) plant.


Sign in / Sign up

Export Citation Format

Share Document