scholarly journals Synthesis, characterization and Stydy thermal stabilization effect of calcium complex of anthocyanin on the poly (vinyl chloride)

2021 ◽  
Vol 2063 (1) ◽  
pp. 012005
Author(s):  
Hikmat A Ali ◽  
Hussein A Shnawa ◽  
Dhiaa A Abidalimam

Abstract In this study, calcium complex of anthocyanin was synthesized from anthocyanin, a flavonoid type natural phenolic product, which was extracted from eggplant peel. The structure of Ca-anthocyanin was characterized by FTIR spectroscopy. Its efficiency as bio-based thermal stabilizer to stabilize poly (vinyl chloride) was investigated and compared to that of Reapak B-NT/7060, a Ca/Zn-based commercial stabilizer. The influence of Ca-anthocyanin complex on the thermal degradation reaction of PVC was monitored by differential scanning calorimetry (DSC). The results indicated that the Ca-anthocyanin complex is an efficient thermal stabilizer and it reduces the rate of dehydrochlorination reaction of PVC already at a concentration as small as 2 phr, part per hundred of PVC resin. The thermal degradation reaction of PVC through the first degradation stage is clearly limited by the addition of Ca-anthocyanin complex as single (primary) stabilizer. Its efficiency is similar to that of Reapak B-NT/7060 used as reference stabilizer and it can enhance the performance of commercial stabilizer when used as co-stabilizer at mixing ratio (1:1). This study has allowed verifying and validating the usefulness of environmental friendly thermal stabilizer for PVC with very evident stabilization effect.

RSC Advances ◽  
2017 ◽  
Vol 7 (59) ◽  
pp. 37268-37275 ◽  
Author(s):  
Yin Lv ◽  
Jia Liu ◽  
Zhidong Luo ◽  
Heyun Wang ◽  
Zhong Wei

Comparing two models, the dehydrochlorination reaction of PVC was predominantly initiated at the internal allylic chlorine sites, further promoting degradation.


Author(s):  
T.O. Egbuchunam ◽  
F.E. Okieimen ◽  
D.B. Balköse

Novel biobased additives prepared from rubber seed oil were evaluated as thermal stabilizer for PVC. Divalent metal (barium and cadmium) soaps of rubber seed oil were prepared by metathesis in aqueous alcohol and characterized by thermal methods (differential scanning calorimetry and thermogravimetry). The stabilizing effect of the soaps and their admixtures on the thermal degradation of PVC powder and plasticized PVC was examined by dynamic thermogravimetry and dehydrochlorination studies at 160oC using the Thermomat equipment. The metal soaps showed multiple decomposition endotherms but were generally stable (with weight loss less than 5%) within the temperature range (180 – 220oC) frequently used in the processing of PVC. Using the Broido model, values of apparent activation energy of decomposition of between 50 and 200 kJmol-1 were obtained for the soaps. The biobased additives were found to be relatively effective in stabilizing PVC in powder and plasticized forms against thermal degradation. Using inhibition/retardation time, temperature of incipient decomposition, and temperature at which various extents of decomposition was attained as indices of thermal stabilization, the results from this study indicate a potential for the application of the biobased additives as thermal stabilizer for PVC in rigid and flexible formulations.


1973 ◽  
Vol 26 (8) ◽  
pp. 1791 ◽  
Author(s):  
RS Dickson ◽  
LJ Michel

The thermal decomposition of Co2(CO)6(PhC2Ph) has been investigated in detail. Differential scanning calorimetry was used to determine the most suitable temperature range for the study. At 180�, Co2(CO)6(PhC2Ph) decomposes to form cobalt, carbon monoxide, tetraphenylcyclopentadienone, hexaphenylbenzene, and other organic compounds. Variation in the temperature, the time, and the solvent used for the degradation reaction causes significant changes in the yields of the organic products. An investigation of the effects of adding stoichiometric amounts of free alkyne, tetra-phenylcyclopentadienone, and hexaphenylbenzene has been initiated in an attempt to understand the degradation mechanism.


Sign in / Sign up

Export Citation Format

Share Document