scholarly journals Urban Dynamic Expansion Computer Simulation of RF-NH-CA Model Considering Neighborhood Heterogeneity

2021 ◽  
Vol 2083 (3) ◽  
pp. 032032
Author(s):  
Junyi Li ◽  
Minghao Liu ◽  
Tianlin Liu ◽  
Lei Jing

Abstract “Neighborhood” as the principle of “the closer the distance, the more relevant the attributes”, is often used as a key driving factor for the urban dynamic modeling of cellular automata; however, the current implementation of the “neighborhood” idea is mostly adopted Mean probability method. This method affects the accuracy of urban dynamic simulation to a certain extent because it ignores the spatial heterogeneity of neighboring cells. Based on the random forest method to evaluate the suitability probability of land use, this study uses the intensity gradient change characteristics of the luminous data to endow the traditional neighborhood cell heterogeneity characteristics, and builds a random forest neighborhood heterogeneity CA model (Random forest Neighborhood Heterogeneity Cellular Automata, RF-NH-CA), and verified the effectiveness of the model by simulating the changes in urban land use in the 21 districts of Chongqing’s main city from 2010 to 2017 through a multi-scheme comparative experiment. The results showed that the overall simulation accuracy of the RF-NH-CA model reached 97.59%, and the Kappa coefficient reached 0.7434; compared with the traditional models RF-CA, ANN-CA and Logistic-CA, FoM increased by 0.0274,0.0383,0.0579, respectively. The Kappa coefficient increased by 0.0162,0.0229,0.0351 respectively. Studies have shown that giving the neighborhood cell heterogeneity through luminous data has played a role in improving the accuracy of land use simulation, which is more in line with the real urban expansion.

2021 ◽  
Vol 10 (8) ◽  
pp. 503
Author(s):  
Hang Liu ◽  
Riken Homma ◽  
Qiang Liu ◽  
Congying Fang

The simulation of future land use can provide decision support for urban planners and decision makers, which is important for sustainable urban development. Using a cellular automata-random forest model, we considered two scenarios to predict intra-land use changes in Kumamoto City from 2018 to 2030: an unconstrained development scenario, and a planning-constrained development scenario that considers disaster-related factors. The random forest was used to calculate the transition probabilities and the importance of driving factors, and cellular automata were used for future land use prediction. The results show that disaster-related factors greatly influence land vacancy, while urban planning factors are more important for medium high-rise residential, commercial, and public facilities. Under the unconstrained development scenario, urban land use tends towards spatially disordered growth in the total amount of steady growth, with the largest increase in low-rise residential areas. Under the planning-constrained development scenario that considers disaster-related factors, the urban land area will continue to grow, albeit slowly and with a compact growth trend. This study provides planners with information on the relevant trends in different scenarios of land use change in Kumamoto City. Furthermore, it provides a reference for Kumamoto City’s future post-disaster recovery and reconstruction planning.


Author(s):  
Meisam Jafari ◽  
Seyed Masoud Monavari ◽  
Hamid Majedi ◽  
Ali Asghar Alesheikh ◽  
Mirmasoud Kheirkhah Zarkesh

Although, promotion of urbanization culture in recent decades has made inevitable development of cities in the world, however, the development can be guided in a direction that leave, to the extent possible, minimum socioeconomic and environmental impacts. For this, it is required to first forecast auto-spreading orientation of cities and suburbs in rural areas over time and then avoid shapeless growth of cities. This paper is an attempt to develop a dynamic hybrid model based on logistic regression (LR), Markov chain (MC), and cellular automata (CA) for prediction of future urban sprawl in fast-growing cities. The model was developed using 12 widely-used urban development criteria, whose significant coefficient was determined by logistic regression, and validated by relative operating characteristic (ROC) analysis. The validated model was run in Guilan, a tourist province in northern Iran with a very high rate of urban development. For this, changes in the area of urban land use were detected over the period of 1989 to 2013 and then, future sprawl of the province was forecasted by the years 2025 and 2037. The analysis results revealed that the area of urban land use was increased by more than 1.7 % from 36012.5 ha in 1989 to 59754.8 ha in 2013, and the area of Caspian Hyrcanian forestland was reduced by 31628 ha. The results also predicted an alarming increase in the rate of urban development in the province by the years 2025 and 2037, during which urban land use is predicted to develop 0.9 % and 1.38 %, respectively. The development pattern is expected to be uneven and scattered, without following any particular direction. The development will occur close to the existing or newly-formed urban basements as well as around major roads and commercial areas. This development, if not controlled, will lead to the loss of 13863 ha of Hyrcanian forests and if the trend continues, 21013 ha of Hyrcanian forests and 20208 ha of Barren/open lands are expected to be destroyed by the year 2037. In general, the proposed model is an efficient tool for the support of urban planning decisions and facilitates the process of sustainable development of cities by providing decision-makers with an overview on future development of cities where the growth rate is very fast.


Author(s):  
P. Myagmartseren ◽  
I. Myagmarjav ◽  
N. Enkhtuya ◽  
G. Byambakhuu ◽  
T. Bazarkhand

Abstract. Long-term urban built-up area changes of the Ulaanbaatar city has accelerated since the 1950s and due to rapid urbanization most of the Mongolian population, or about 68%, live in urban areas. The systematic understanding of urban land expansion is a crucial clue for urban land use planning and sustainable land development. Therefore, in this paper, we used a Markov chain model and cellular automata (CA) to simulate and predict current and future built-up areas expansion is Ulaanbaatar. Landsat imageries (Landsat TM 5, Landsat ETM 7 and Landsat OLI 8) of 1988, 1998, 2008, and 2017 were used to derive main land use classes. Clark Lab’s (Clark University) Geospatial Monitoring and Model software had been used for the urban expansion prediction. The results are innovated to comparable to validate with other study results by using a different kind of methods. Built-up area expansion modeled and predicted 2028’s trends based on a historical expansion of the Ulaanbaatar city between 1988 and 2017, which are prepared according to input model requirements. The built-up area was 7282 hectares (ha) in 1988 and has expanded to 31144 ha in 2017. The built-up area growth of the Ulaanbaatar city has reached 4.3 times over the past 30 years, and from 2017 to 2028 the expansion of the built-up area will be 1.5 times. A comparison of urban expansion from 1988 to 2017 has revealed a rapid built-up invasion to the previous areas of agriculture, grassland, and forest. Simulation performance of Markov chain with the cellular automata model can be used for an improvement in the understanding of the urban expansion processes while allowing helpful for better planning of Ulaanbaatar city, as well as for other rapidly developing towns of Mongolia.


2005 ◽  
Vol 32 (2) ◽  
pp. 247-263 ◽  
Author(s):  
Kwok Hung Lau ◽  
Booi Hon Kam

This paper presents an urban land-use simulation model using cellular automata (CA). In the model urban growth is regarded as the result of a global process underpinned by local actions and land-use change as the joint action of three different effects: attribute, heterogeneity, and gravity. The attribute and heterogeneity effects are regarded as different aspects of a local driving force for change constituted by changing accessibility and other attributes resulting from the interaction of land use and transport at the neighborhood level. The gravity effect is a universal resistance to change as a result of inertia and agglomeration of compatible land uses in the vicinity. To ensure that local actions would lead to global behavior, a multipass, in addition to a single-pass, land-use-allocation algorithm is designed to mimic land-use changes. With metropolitan Melbourne in Australia as a case study, the performance of the model in replicating land-use changes is compared with that of an alternative model developed by using only a distance function. The results of the comparison show that the proposed CA model outperforms the alternative model with only a distance function, confirming the importance of incorporating local attributes in modeling land-use changes.


2007 ◽  
Vol 34 (4) ◽  
pp. 708-724 ◽  
Author(s):  
Daniel Stevens ◽  
Suzana Dragićević

This study proposes an alternative cellular automata (CA) model, which relaxes the traditional CA regular square grid and synchronous growth, and is designed for representations of land-use change in rural-urban fringe settings. The model uses high-resolution spatial data in the form of irregularly sized and shaped land parcels, and incorporates synchronous and asynchronous development in order to model more realistically land-use change at the land parcel scale. The model allows urban planners and other stakeholders to evaluate how different subdivision designs will influence development under varying population growth rates and buyer preferences. A model prototype has been developed in a common desktop GIS and applied to a rapidly developing area of a midsized Canadian city.


2021 ◽  
Vol 13 (4) ◽  
pp. 2338
Author(s):  
Xinxin Huang ◽  
Gang Xu ◽  
Fengtao Xiao

As one of the 17 Sustainable Development Goals, it is sensible to analysis historical urban land use characteristics and project the potentials of urban sustainable development for a smart city. The cellular automaton (CA) model is the widely applied in simulating urban growth, but the optimum parameters of variables driving urban growth in the model remains to be continued to improve. We propose a novel model integrating an artificial fish swarm algorithm (AFSA) and CA for optimizing parameters of variables in the urban growth model and make a comparison between AFSA-CA and other five models, which is used to study a 40-year urban land growth of Wuhan. We found that the urban growth types from 1995 to 2015 appeared relatively consistent, mainly including infilling, edge-expansion and distant-leap types in Wuhan, which a certain range of urban land growth on the periphery of the central area. Additionally, although the genetic algorithms (GA)-CA model and the AFSA-CA model among the six models due to the distance variables, the parameter value of the GA-CA model is −15.5409 according to the fact that the population (POP) variable should be positively. As a result, the AFSA-CA model regardless of the initial parameter setting is superior to the GA-CA model and the GA-CA model is superior to all the other models. Finally, it is projected that the potentials of urban growth in Wuhan for 2025 and 2035 under three scenarios (natural urban land growth without any restrictions (NULG), sustainable urban land growth with cropland protection and ecological security (SULG), and economic urban land growth with sustainable development and economic development in the core area (EULG)) focus mainly on existing urban land and some new town centers based on AFSA-CA urban growth simulation model. An increasingly precise simulation can determine the potential increase area and quantity of urban land, providing a basis to judge the layout of urban land use for urban planners.


2021 ◽  
Vol 10 (3) ◽  
pp. 149
Author(s):  
Nuno Pinto ◽  
António P. Antunes ◽  
Josep Roca

Cellular automata (CA) models have been used in urban studies for dealing with land use change. Transport and accessibility are arguably the main drivers of urban change and have a direct influence on land use. Land use and transport interaction models deal with the complexity of this relationship using many different approaches. CA models incorporate these drivers, but usually consider transport (and accessibility) variables as exogenous. Our paper presents a CA model where transport variables are endogenous to the model and are calibrated along with the land use variables to capture the interdependent complexity of these phenomena. The model uses irregular cells and a variable neighborhood to simulate land use change, taking into account the effect of the road network. Calibration is performed through a particle swarm algorithm. We present an application of the model to a comparison of scenarios for the construction of a ring road in the city of Coimbra, Portugal. The results show the ability of the CA model to capture the influence of change of the transport network (and thus in accessibility) in the land use dynamics.


Author(s):  
BENCHELHA MOHAMED ◽  
Benzha Fatiha ◽  
Rhinane Hassan ◽  
BENCHELHA SAID ◽  
BENCHELHA TAOUFIK ◽  
...  

In this study, our goal was to research land-use change by combining spatio–temporal land use/land cover monitoring (LULC (1989–2019) and urban growth modeling (1999–2039) in Benslimane, Morocco, to determine the effect of urban growth on different groups based on cellular automata (CA) and geospatial methods. A further goal was to test the reliability of the AC algorithm for urban expansion modeling. To do this, four years of satellite data were used at the same time as population density, downtown distance, slope, and ground road distance. The LULC satellite reported a rise of 3.8 km2 (318% variation) during 1989–2019. Spatial transformation analysis reveals a good classification similarity ranging from 89% to 91% with the main component analysis (PCA) technique. The statistical accuracy between the satellite scale and the replicated built region of 2019 gave 97.23 %t of the confusion matrix overall accuracy, and the region under the receiver operational characteristics (ROC) curve to 0.94, suggesting the model's high accuracy. Although the constructed area remains low relative to the total area of the municipality's territory, the LULC project shows that the urban area will extend to 5,044 km2 in 2019, principally in the western and southwestern sections. In 2019–2039, urban development is expected to lead to a transformation of the other class (loss of 1,364 km2), followed by vegetation cover (loss of 0.345 km2). In spatial modeling and statistical calculations, the GDAL and NumPy Python 3.8 libraries were successful.


Sign in / Sign up

Export Citation Format

Share Document