scholarly journals Modeling of Urban Growth Using Cellular Automata and GIS Case of Benslimane in Morocco

Author(s):  
BENCHELHA MOHAMED ◽  
Benzha Fatiha ◽  
Rhinane Hassan ◽  
BENCHELHA SAID ◽  
BENCHELHA TAOUFIK ◽  
...  

In this study, our goal was to research land-use change by combining spatio–temporal land use/land cover monitoring (LULC (1989–2019) and urban growth modeling (1999–2039) in Benslimane, Morocco, to determine the effect of urban growth on different groups based on cellular automata (CA) and geospatial methods. A further goal was to test the reliability of the AC algorithm for urban expansion modeling. To do this, four years of satellite data were used at the same time as population density, downtown distance, slope, and ground road distance. The LULC satellite reported a rise of 3.8 km2 (318% variation) during 1989–2019. Spatial transformation analysis reveals a good classification similarity ranging from 89% to 91% with the main component analysis (PCA) technique. The statistical accuracy between the satellite scale and the replicated built region of 2019 gave 97.23 %t of the confusion matrix overall accuracy, and the region under the receiver operational characteristics (ROC) curve to 0.94, suggesting the model's high accuracy. Although the constructed area remains low relative to the total area of the municipality's territory, the LULC project shows that the urban area will extend to 5,044 km2 in 2019, principally in the western and southwestern sections. In 2019–2039, urban development is expected to lead to a transformation of the other class (loss of 1,364 km2), followed by vegetation cover (loss of 0.345 km2). In spatial modeling and statistical calculations, the GDAL and NumPy Python 3.8 libraries were successful.

Author(s):  
S. Shrestha

Abstract. Increasing land use land cover changes, especially urban growth has put a negative impact on biodiversity and ecological process. As a consequences, they are creating a major impact on the global climate change. There is a recent concern on the necessity of exploring the cause of urban growth with its prediction in future and consequences caused by this for sustainable development. This can be achieved by using multitemporal remote sensing imagery analysis, spatial metrics, and modeling. In this study, spatio-temporal urban change analysis and modeling were performed for Biratnagar City and its surrounding area in Nepal. Land use land cover map of 2004, 2010, and 2016 were prepared using Landsat TM imagery using supervised classification based on support vector machine classifier. Urban change dynamics, in term of quantity, and pattern was measured and analyzed using selected spatial metrics and using Shannon’s entropy index. The result showed that there is increasing trend of urban sprawl and showed infill characteristics of urban expansion. Projected land use land cover map of 2020 was modeled using cellular automata-based approach. The predictive power of the model was validated using kappa statistics. Spatial distribution of urban expansion in projected land use land cover map showed that there is increasing threat of urban expansion on agricultural land.


2021 ◽  
Author(s):  
Yousef Ghobadiha ◽  
Hamid Motieyan

Abstract Due to increasing urbanization, the rapid expansion of urban spaces has become a major environmental concern over the last few decades. Therefore, modeling the urban expansion as a complex system has been scrutinized in recent years; however, determining the rules that lead to the expansion of urban areas has always been a challenging factor in this field, especially for disaggregated models like cellular automata (CA). To overcome this issue, in this research, an Adaptive Network-based Fuzzy Inference System (ANFIS) is proposed to enhance the simulation of urban growth through the automatic production of transition rules. The ANFIS can be associated with several inputs division methods, such as ANFIS accompanied by grid partitioning (ANFIS-GP), subtractive clustering (ANFIS-SC), and fuzzy c-means clustering (ANFIS-FCM). Hence, twenty-two ANFIS models based on Landsat images for the time interval from 2000 to 2010 and using different division methods were trained to investigate their effect on the efficiency of ANFIS in urban growth modeling. To examine the efficiency, the Cellular Automata-based Markov Chain (CA-MC) as a popular method was developed, and the simulation accuracy of CA-MC and the most accurate ANFIS models were obtained through comparison with observed data. The most accurate ANFIS-SC model had a Kappa of 0.76 and an overall accuracy of 93.41% for the 2019 simulated map. The results from this study reveal that the ANFIS model is effective at simulating urban expansion and the ANFIS-SC is superior to CA-MC, ANFIS-GP, and ANFIS-FCM models in urban expansion modeling.


2021 ◽  
Author(s):  
Yousef Ghobadiha ◽  
Hamid Motieyan

Abstract Due to increasing urbanization, the rapid expansion of urban spaces has become a major environmental concern over the last few decades. Therefore, modeling the urban expansion as a complex system has been scrutinized in recent years; however, determining the rules that lead to the expansion of urban areas has always been a challenging factor in this field, especially for disaggregated models like cellular automata (CA). To overcome this issue, in this research, an Adaptive Network-based Fuzzy Inference System (ANFIS) is proposed to enhance the simulation of urban growth through the automatic production of transition rules. The ANFIS can be associated with several inputs division methods, such as ANFIS accompanied by grid partitioning (ANFIS-GP), subtractive clustering (ANFIS-SC), and fuzzy c-means clustering (ANFIS-FCM). Hence, twenty-two ANFIS models based on Landsat images for the time interval from 2000 to 2010 and using different division methods were trained to investigate their effect on the efficiency of ANFIS in urban growth modeling. To examine the efficiency, the Cellular Automata-based Markov Chain (CA-MC) as a popular method was developed, and the simulation accuracy of CA-MC and the most accurate ANFIS models were obtained through comparison with observed data. The most accurate ANFIS-SC model had a Kappa of 0.76 and an overall accuracy of 93.41% for the 2019 simulated map. The results from this study reveal that the ANFIS model is effective at simulating urban expansion and the ANFIS-SC is superior to CA-MC, ANFIS-GP, and ANFIS-FCM models in urban expansion modeling.


2021 ◽  
Vol 13 (2) ◽  
pp. 748
Author(s):  
Iana Rufino ◽  
Slobodan Djordjević ◽  
Higor Costa de Brito ◽  
Priscila Barros Ramalho Alves

The northeastern Brazilian region has been vulnerable to hydrometeorological extremes, especially droughts, for centuries. A combination of natural climate variability (most of the area is semi-arid) and water governance problems increases extreme events’ impacts, especially in urban areas. Spatial analysis and visualisation of possible land-use change (LUC) zones and trends (urban growth vectors) can be useful for planning actions or decision-making policies for sustainable development. The Global Human Settlement Layer (GHSL) produces global spatial information, evidence-based analytics, and knowledge describing Earth’s human presence. In this work, the GHSL built-up grids for selected Brazilian cities were used to generate urban models using GIS (geographic information system) technologies and cellular automata for spatial pattern simulations of urban growth. In this work, six Brazilian cities were selected to generate urban models using GIS technologies and cellular automata for spatial pattern simulations of urban sprawl. The main goal was to provide predictive scenarios for water management (including simulations) and urban planning in a region highly susceptible to extreme hazards, such as floods and droughts. The northeastern Brazilian cities’ analysis raises more significant challenges because of the lack of land-use change field data. Findings and conclusions show the potential of dynamic modelling to predict scenarios and support water sensitive urban planning, increasing cities’ coping capacity for extreme hazards.


Water Policy ◽  
2016 ◽  
Vol 19 (1) ◽  
pp. 181-195 ◽  
Author(s):  
Huiqing Han ◽  
Yuxiang Dong

Water supply is an important freshwater ecosystem service provided by ecosystems. Water shortages resulting from spatio-temporal heterogeneity of climate condition or human activities present serious problems in the Guizhou Province of southwest China. This study aimed to analyze the spatio-temporal changes of water supply service using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, explore how climate and land-use changes impact water supply provision, and discuss the impact of parameters associated with climate and land-use in the InVEST model on water supply in the region. We used data and the model to forecast trends for the year 2030 and found that water supply has been declining in the region at the watershed scale since 1990. Climate and land-use change played important roles in affecting the water supply. Water supply was overwhelmingly driven by the reference evapotranspiration and annual average precipitation, while the plant evapotranspiration coefficients for each land-use type had a relatively small effect. The method for sensitivity analysis developed in this study allowed exploration of the relative importance of parameters in the InVEST water yield model. The Grain-for-Green project, afforestation, and urban expansion control should be accelerated in this region to protect the water supply.


Author(s):  
Андрій Юрійович Шелестов ◽  
Алла Миколаївна Лавренюк ◽  
Богдан Ялкапович Яйлимов ◽  
Ганна Олексіївна Яйлимова

Ukraine is an associate member of the European Union and in the coming years it is expected that all data and services already used by EU countries will be available to Ukraine. The lack of quality national products for assessing the development and planning of urban growth makes it impossible to assess the impact of cities on the environment and human health. The first steps to create such products for the cities of Ukraine were initiated within the European project "SMart URBan Solutions for air quality, disasters and city growth" (SMURBS), in which specialists from the Space Research Institute of NAS of Ukraine and SSA of Ukraine received the first city atlas for the Kyiv city, which was similar to the European one. However, the resulting product had significantly fewer types of land use than the European one and therefore the question of improving the developed technology arose. The main purpose of the work is to analyze the existing technology of European service Urban Atlas creation and its improvement by developing a unified algorithm for building an urban atlas using all available open geospatial and satellite data for the cities of Ukraine. The development of such technology is based on our own technology for classifying satellite time series with a spatial resolution of 10 meters to build a land cover map, as well as an algorithm for unifying open geospatial data to urban atlases Copernicus. The technology of construction of the city atlas developed in work, based on the intellectual model of classification of a land cover, can be extended to other cities of Ukraine. In the future, the creation of such a product on the basis of data for different years will allow to assess changes in land use and make a forecast for further urban expansion. The proposed information technology for constructing the city atlas will be useful for assessing the dynamics of urban growth and closely related social and economic indicators of their development. Based on it, it is also possible to assess indicators of achieving the goals of sustainable development, such as 11.3.1 "The ratio of land consumption and population growth." The study shows that the city atlas obtained for the Kyiv city has a high level of quality and has comparable land use classes with European products. It indicates that such a product can be used in government decision-making services.


Sign in / Sign up

Export Citation Format

Share Document