scholarly journals Capacity optimization of renewable energy microgrid considering hydropower cogeneration

2021 ◽  
Vol 2083 (3) ◽  
pp. 032068
Author(s):  
Lijun Fan ◽  
Jiedong Cui

Abstract This paper proposes a renewable energy system based on photovoltaic power generation, wind power generation and solar thermal power generation, combining thermal power plants with low-temperature multi-effect distillation. Through the electric heater and the thermal storage system photovoltaic and wind power will spare capacity in the form of heat energy, at the same time by thermal power generation system to maintain the stability of the power supply, run under constant output scheduling policy, to the levelling of the smallest energy cost and the design of power rate of maximum satisfaction as the goal, using multi-objective particle swarm optimization (PSO) algorithm to find the best combination of capacity, this system is established. At the same time, combined with low-temperature multi-effect distillation, compared with reverse osmosis seawater desalination cost is lower, reduce energy consumption, has a good application prospect.

2021 ◽  
Vol 25 (4 Part B) ◽  
pp. 2905-2912
Author(s):  
Bowen Wang

In the smart grid context, the article combines SEGS-VI solar thermal power station parameters to establish a solar thermal power generation system model. The thesis is based on the First and Second laws of thermodynamics. It uses the white box model analysis method of the energy system to calculate the solar thermal power generation system-concentrating and collecting subsystem, heat exchange subsystem, and power subsystem to obtain the subsystems dissipation of each process. Finally, the article uses the white box model analysis of the total energy system to treat the subsystems as white boxes, and connects them to form a white box network, makes a reasonable evaluation of the energy consumption status of the total energy system, and finds the weak links in the energy use process of the system. Provide a basis for system energy saving.


Author(s):  
M.V. Cherniavskyi

The structure of electricity cost formation for consumers, including depending on the cost of TPP generation, «green» energy and other sources, is investigated, and the main conditions of the efficient regulatory function fulfillment in the power system by thermal power generation in the conditions of Ukraine's course on carbon-free energy are formulated. It is shown that excessive electricity losses in networks and, especially, accelerated increase of the share of «green» generation, much more expensive than nuclear, hydro and thermal, mainly contribute to the growth of electricity costs for non-household consumers and the need to raise tariffs for the population. This accelerated increase directly contradicts the Paris Climate Agreement, according to which plans to reduce Ukraine’s greenhouse gas emissions must be developed taking into account available energy resources and without harming its own economy. The dependences of the specific fuel consumption on the average load and the frequency of start-stops of units are found and it is shown that the increased specific fuel consumption on coal TPPs is an inevitable payment for their use as regulating capacities of UES of Ukraine. In this case, the higher the proportion of «green» generation and a smaller proportion of generating thermal power plants, especially increasing specific fuel consumption. It is proved that in the conditions of growth of the share of «green» generation in Ukraine the share of production of pulverized coal thermal power plants should be kept at the level of not less than 30 % of the total electricity generation. It is substantiated that a necessary condition for coal generation to perform a proper regulatory role in the power system is to introduce both environmental and technical measures, namely — reducing the suction of cold air to the furnace and other boiler elements, restoring condensers and cooling systems, etc. An important factor in reducing the average level of specific fuel consumption is also the reduction of coal burn-out at thermal power plants, where it still remains significant, due to the transfer of power units to the combustion of bituminous coal concentrate. Bibl. 12, Fig. 5, Tab. 5.


2021 ◽  
Vol 24 (4) ◽  
pp. 109-115
Author(s):  
Vyacheslav Valerievich Guryev ◽  
Vladimir Vyacheslavovich Kuvshinov ◽  
Boris Anatolevich Yakimovich

The Crimean Peninsula is the flagship of the development of renewable energy, as it is not only an actively developing region, but also a resort center. The energy complex of the Crimean Peninsula in recent years has increased due to the construction of new power plants (Balaklava TPP and Tavricheskaya TPP) with a total capacity of 940 MW, as well as the construction of new 220 and 330 kV transmission lines, which ensured that the peninsula’s power supply deficit was covered. A review of the regional development and use of renewable energy sources is carried out. Based on the data obtained, an analysis is made of the problems and prospects for the development of renewable energy in the region. The development of renewable energy for the Crimean Peninsula plays an important role in order to achieve environmental safety and develop the economic potential of the region. The paper substantiates the priority use of renewable energy in the region, as well as the solution of emerging problems with an increase in the share of renewable energy in the total generation. The appearance of excess electricity in the power system and the possibility of balancing the generated power of renewable energy and thermal power plants, while reducing the cost of electricity. Investment attractiveness and active population growth in the region leads to an increase in generating capacity and an increase in the maneuverability of the energy system with a significant impact of RES. The efficiency of renewable energy in the energy system, the world experience in managing renewable energy generation, the actual impact of renewable energy on the energy system in conditions of electricity shortage, and forecast work schedules of the SES wind farm provided by the electric power industry entities in the assigned way are taken into account when forming the dispatch schedule and are accepted at the request of the subject. The available experience of existing SES in the power system of the Republic of Crimea and the city of Sevastopol requires additional research, including through field testing of generating equipment. Further full-scale tests should be carried out under the conditions of a real electric power mode of the power system, which requires the introduction of modern information technologies that ensure the exchange of technological information and the implementation of appropriate control actions. The work is underway to create a regulatory framework for the control of renewable energy source operation.


2022 ◽  
Vol 355 ◽  
pp. 02032
Author(s):  
Weiwei Jiang ◽  
Zhiyu Song ◽  
Zhongyan Wang ◽  
Ping Guo

Although Jilin Province has abundant forest reserves and has a relatively large carbon neutral advantage compared to other provinces, the installed capacity of thermal power is still relatively high, and the installed capacity of renewable energy such as wind power, photovoltaic and hydropower is insufficient. This paper builds a carbon emission model for the power generation industry in Jilin Province based on the characteristics of the power generation industry in Jilin Province and years of field test experience.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1110 ◽  
Author(s):  
Yunesky Masip ◽  
Anibal Gutierrez ◽  
Joel Morales ◽  
Antonio Campo ◽  
Meyli Valín

Providing energy to areas isolated from the electricity grid through the use of a smart integrated renewable energy system (SIRES) is proposed in this study for Valparaiso, Chile. The study analyzes the process of identifying the appropriate size of a SIRES considering technical and economic factors. An optimization model proposed in the literature was modified, and a subsequent spatial–temporal analysis of the different variables was conducted. The model comprises locally available renewable energy resources, such as biomass, biogas, wind power, solar photovoltaic, and thermal power. Furthermore, it was used to determine the energy potential of each of the isolated areas, identifying those areas in which the SIRES could be implemented as a sustainable solution. The design simulates the cost of the initial investment and energy generation in the chosen areas. The study also includes the selection of different system components and the use of the general model to determine the optimal combination of energy subsystems for isolated areas with the aim of minimizing the cost of energy generations. Finally, an economic evaluation showed that the use of a SIRES based mainly on solar energy supported by biomass, biogas, and mini-wind power costs approximately three times less than extending the electricity grid network.


2022 ◽  
Author(s):  
Ulrike Fettke

Given the key role of municipalities in the transformation of the energy system and observing the increased occurrence of conflicts about the construction of renewable energy plants, the author analyses conflicts relating to renewable energy plants from a sociological perspective. For this purpose, she undertakes three case studies on the construction of biogas and wind power plants, focusing in particular on the parties involved in the conflicts and their positions, perceptions, actions and potency. She shows that the conflicting parties were either in favour of the construction of the plants or advocated the preservation of the sites on which the plants were proposed to be built.


2013 ◽  
Vol 805-806 ◽  
pp. 316-319
Author(s):  
Xiao Li Zhao ◽  
Jin Yao ◽  
Ya Nan Hu

Based on a case study of Jilin province in Northeast China, this paper applied input-output analysis method to contrast different effects of wind power and thermal power generation on local economic growth. The results indicate that the driving effect of wind power on economic growth in the output of per ten thousand Yuan is lower 5205 Yuan than that of thermal power. However, taking serious environmental externalities produced by thermal power generation into account, thermal power economic value will be greatly decreased.


Author(s):  
Isoharu Nishiguchi ◽  
Seiichi Hamada

In response to the pipe wall thinning damage experienced in power plants in 2004, the Japan Society of Mechanical Engineers (JSME) has started activities to develop technical standards on the pipe wall thinning management. The first edition of the JSME rules on pipe wall thinning management for thermal power generation facilities (JSME S TB1-2006 [1]) was issued in March 2006, and its latest edition will be issued in 2007, which describes the technical requirements to meet the JSME performance-based rules for pipe wall thinning management (JSME S CA-1 2005 [2]). Based on 24,774 inspection data obtained at the thermal power plants in Japan, the latest JSME rules will show the specific attention to the need for inspection of piping systems that are susceptible to the wall thinning damage. The JSME rules describe the selection of thickness measurement locations such as downstream of piping configurations that produce turbulence, downstream of orifices, downstream of control valves, and they describe the periodic inspections including the first inspection to be scheduled taking the wall thinning rate data at the equivalent locations into consideration. The JSME rules stipulate some available inspection methods such as ultrasonic scanning, radiographic profile, eddy current and potential drop technique. This paper presents outline of the JSME rules including basic philosophy, technical requirements on the inspection and testing practices and the relation with the regulations in Japan.


Sign in / Sign up

Export Citation Format

Share Document