scholarly journals Computer Mathematical Statistics Analysis of downscaling data of different vegetation index inversion TRMM

2021 ◽  
Vol 2083 (4) ◽  
pp. 042052
Author(s):  
Shuangbao Qu ◽  
Miaoxing Zhao ◽  
Shuo Deng

Abstract This paper uses enhanced vegetation index (EVI) data, normalized vegetation index (NDVI) data, DEM, aspect data, and TRMM3B43 (V7) data, based on a geographically weighted regression model (GWR), and uses a statistical downscaling method to achieve Central China Downscaling of regional TRMM data from 2010 to 2019. The research results show: (1) TRMM data has good applicability in Central China, and the R2of TRMM data and weather station measured data is above 0.8. (2) Improve the ground resolution from 0.25°×0.25° (approximately 27.5km×27.5km) to 1km×1km while ensuring the same accuracy as the original data. (3) Overall, the accuracy of EVI downscaled precipitation data in Central China is better than that of NDVI downscaled precipitation data.

Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 673
Author(s):  
Chen Yang ◽  
Meichen Fu ◽  
Dingrao Feng ◽  
Yiyu Sun ◽  
Guohui Zhai

Vegetation plays a key role in ecosystem regulation and influences our capacity for sustainable development. Global vegetation cover has changed dramatically over the past decades in response to both natural and anthropogenic factors; therefore, it is necessary to analyze the spatiotemporal changes in vegetation cover and its influencing factors. Moreover, ecological engineering projects, such as the “Grain for Green” project implemented in 1999, have been introduced to improve the ecological environment by enhancing forest coverage. In our study, we analyzed the changes in vegetation cover across the Loess Plateau of China and the impacts of influencing factors. First, we analyzed the latitudinal and longitudinal changes in vegetation coverage. Second, we displayed the spatiotemporal changes in vegetation cover based on Theil-Sen slope analysis and the Mann-Kendall test. Third, the Hurst exponent was used to predict future changes in vegetation coverage. Fourth, we assessed the relationship between vegetation cover and the influence of individual factors. Finally, ordinary least squares regression and the geographically weighted regression model were used to investigate the influence of various factors on vegetation cover. We found that the Loess Plateau showed large-scale greening from 2000 to 2015, though some regions showed decreasing vegetation cover. Latitudinal and longitudinal changes in vegetation coverage presented a net increase. Moreover, some areas of the Loess Plateau are at risk of degradation in the future, but most areas showed a sustainable increase in vegetation cover. Temperature, precipitation, gross domestic product (GDP), slope, cropland percentage, forest percentage, and built-up land percentage displayed different relationships with vegetation cover. Geographically weighted regression model revealed that GDP, temperature, precipitation, forest percentage, cropland percentage, built-up land percentage, and slope significantly influenced (p < 0.05) vegetation cover in 2000. In comparison, precipitation, forest percentage, cropland percentage, and built-up land percentage significantly affected (p < 0.05) vegetation cover in 2015. Our results enhance our understanding of the ecological and environmental changes in the Loess Plateau.


2020 ◽  
Author(s):  
Marlvin Anemey Tewara ◽  
Liu Yunxia ◽  
Weiqiang Ling ◽  
Binang Helen Barong ◽  
Prisca Ngetemalah Mbah-Fongkimeh ◽  
...  

Abstract Background: Studies have illustrated the association of malaria cases with environmental factors in Cameroon but limited in addressing how these factors vary in space for timely public health interventions. Thus, we want to find the spatial variability between malaria hotspot cases and environmental predictors using Geographically weighted regression (GWR) spatial modelling technique.Methods: The global Ordinary least squares (OLS) in the modelling spatial relationships tool in ArcGIS 10.3. was used to select candidate explanatory environmental variables for a properly specified GWR model. The local GWR model used the global OLS candidate variables to examine, predict and explore the spatial variability between environmental factors and malaria hotspot cases generated from Getis-Ord Gi* statistical analysis. Results: The OLS candidate environmental variable coefficients were statistically significant (adjusted R2 = 22.3% and p < 0.01) for a properly specified GWR model. The GWR model identified a strong spatial association between malaria cases and rainfall, vegetation index, population density, and drought episodes in most hotspot areas and a weak correlation with aridity and proximity to water with an overall model performance of 0.243 (adjusted R2= 24.3%).Conclusion: The generated GWR maps suggest that for policymakers to eliminate malaria in Cameroon, there should be the creation of malaria outreach programs and further investigations in areas where the environmental variables showed strong spatial associations with malaria hotspot cases.


2002 ◽  
Vol 34 (4) ◽  
pp. 733-754 ◽  
Author(s):  
Antonio Páez ◽  
Takashi Uchida ◽  
Kazuaki Miyamoto

Geographically weighted regression (GWR) has been proposed as a technique to explore spatial parametric nonstationarity. The method has been developed mainly along the lines of local regression and smoothing techniques, a strategy that has led to a number of difficult questions about the regularity conditions of the likelihood function, the effective number of degrees of freedom, and in general the relevance of extending the method to derive inference and model specification tests. In this paper we argue that placing GWR within a different statistical context, as a spatial model of error variance heterogeneity, or what might be termed locational heterogeneity, solves these difficulties. A maximum-likelihood-based framework for estimation and inference of a general geographically weighted regression model is presented that leads to a method to estimate location-specific kernel bandwidths. Moreover, a test for locational heterogeneity is derived and its use exemplified with a case study.


Sign in / Sign up

Export Citation Format

Share Document