scholarly journals Direct Numerical Simulation of separated turbulent flow in axisymmetric diffuser

2021 ◽  
Vol 2103 (1) ◽  
pp. 012214
Author(s):  
A S Stabnikov ◽  
D K Kolmogorov ◽  
A V Garbaruk ◽  
F R Menter

Abstract Direct numerical simulation (DNS) of the separated flow in axisymmetric CS0 diffuser is conducted. The obtained results are in a good agreement with experimental data of Driver and substantially supplement them. Along with other data, eddy viscosity extracted from performed DNS could be used for RANS turbulence model improvement.

Author(s):  
Chao Liu ◽  
Jiren Zhou ◽  
Li Cheng

The experiment study was made to optimize the design of a pumping forebay. The Combined-sills were made in the forebay to eliminate the circulation and vortices of the diffusing flow successfully. The Numerical simulation of three-dimensional turbulent flow is applied on the complicate fore-and-aft flow of sills. The computational results are compared with the measurement results of physical model. The calculated results are in good agreement with the experimental data. The flow pattern is obviously improved. The study results have been applied in the project which gives a uniform approach flow to the pumping sump.


1973 ◽  
Vol 95 (4) ◽  
pp. 566-568 ◽  
Author(s):  
J. A. Paterson ◽  
R. Greif

The eddy viscosity distribution near the surface of a rotating disk is determined from an analysis of the basic conservation equations. The results are applied to the high Schmidt number problem and good agreement is obtained with experimental data for the mass flux.


2003 ◽  
Vol 3 (1-2) ◽  
pp. 201-207
Author(s):  
H. Nagaoka ◽  
T. Nakano ◽  
D. Akimoto

The objective of this research is to investigate mass transfer mechanism in biofilms under oscillatory flow conditions. Numerical simulation of turbulence near a biofilm was conducted using the low Reynold’s number k-ɛ turbulence model. Substrate transfer in biofilms under oscillatory flow conditions was assumed to be carried out by turbulent diffusion caused by fluid movement and substrate concentration profile in biofilm was calculated. An experiment was carried out to measure velocity profile near a biofilm under oscillatory flow conditions and the influence of the turbulence on substrate uptake rate by the biofilm was also measured. Measured turbulence was in good agreement with the calculated one and the influence of the turbulence on the substrate uptake rate was well explained by the simulation.


1998 ◽  
Vol 41 (2) ◽  
pp. 447-453 ◽  
Author(s):  
Takashi OHTA ◽  
Yutaka MIYAKE ◽  
Takeo KAJISHIMA

1999 ◽  
Vol 392 ◽  
pp. 45-71 ◽  
Author(s):  
ILIAS ILIOPOULOS ◽  
THOMAS J. HANRATTY

Dispersion of fluid particles in non-homogeneous turbulence was studied for fully developed flow in a channel. A point source at a distance of 40 wall units from the wall is considered. Data obtained by carrying out experiments in a direct numerical simulation (DNS) are used to test a stochastic model which utilized a modified Langevin equation. All of the parameters, with the exception of the time scales, are obtained from Eulerian statistics. Good agreement is obtained by making simple assumptions about the spatial variation of the time scales.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Eduard Amromin

Cavitation within regions of flow separation appears in drifting vortices. A two-part computational method is employed for prediction of cavitation inception number there. The first part is an analysis of the average flow in separation regions without consideration of an impact of vortices. The second part is an analysis of equilibrium of the bubble within the core of a vortex located in the turbulent flow of known average characteristics. Computed cavitation inception numbers for axisymmetric flows are in the good agreement with the known experimental data.


2011 ◽  
Vol 130-134 ◽  
pp. 3624-3627
Author(s):  
W.L. Wei ◽  
Zhang Pei ◽  
Y.L. Liu

In this paper, we use two-phase mixture model and the Realizable k-ε turbulence model to numerically simulate the advection secondary flow in a sedimentation tank. The PISO algorithm is used to decouple velocity and pressure. The comparisons between the measured and computed data are in good agreement, which indicates that the model can fully simulate the flow field in a sedimentation tank.


Sign in / Sign up

Export Citation Format

Share Document