scholarly journals Development of a control system to maintain steady transition boiling

2021 ◽  
Vol 2116 (1) ◽  
pp. 012001
Author(s):  
Y Haramura ◽  
Y Kajikawa

Abstract Steady transition boiling offers opportunities to observe fluid behavior and to measure transient and local heat flux as the surface dries and wets. This report discusses temperature control in transition boiling. Each component in the control system is either measured or estimated, and the controller parameters are determined along with the optimum depth of the temperature feedback point. Experiments are performed to verify the theoretical stability limit.

2020 ◽  
Vol 117 (6) ◽  
pp. 602
Author(s):  
Heping Liu ◽  
Jianjun Zhang ◽  
Hongbiao Tao ◽  
Hui Zhang

In this article, based on the actual monitored temperature data from mold copper plate with a dense thermocouple layout and the measured magnetic flux density values in a CSP thin-slab mold, the local heat flux and thin-slab solidification features in the funnel-type mold with electromagnetic braking are analyzed. The differences of local heat flux, fluid flow and solidified shell growth features between two steel grades of Q235B with carbon content of 0.19%C and DC01 of 0.03%C under varying operation conditions are discussed. The results show the maximum transverse local heat flux is near the meniscus region of over 0.3 m away from the center of the wide face, which corresponds to the upper flow circulation and the large turbulent kinetic energy in a CSP funnel-type mold. The increased slab width and low casting speed can reduce the fluctuation of the transverse local heat flux near the meniscus. There is a decreased transverse local heat flux in the center of the wide face after the solidified shell is pulled through the transition zone from the funnel-curve to the parallel-cure zone. In order to achieve similar metallurgical effects, the braking strength should increase with the increase of casting speed and slab width. Using the strong EMBr field in a lower casting speed might reverse the desired effects. There exist some differences of solidified shell thinning features for different steel grades in the range of the funnel opening region under the measured operating conditions, which may affect the optimization of the casting process in a CSP caster.


Author(s):  
R Tabassum ◽  
Rashid Mehmood ◽  
O Pourmehran ◽  
NS Akbar ◽  
M Gorji-Bandpy

The dynamic properties of nanofluids have made them an area of intense research during the past few decades. In this article, flow of nonaligned stagnation point nanofluid is investigated. Copper–water based nanofluid in the presence of temperature-dependent viscosity is taken into account. The governing nonlinear coupled ordinary differential equations transformed by partial differential equations are solved numerically by using fourth-order Runge–Kutta–Fehlberg integration technique. Effects of variable viscosity parameter on velocity and temperature profiles of pure fluid and copper–water nanofluid are analyzed, discussed, and presented graphically. Streamlines, skin friction coefficients, and local heat flux of nanofluid under the impact of variable viscosity parameter, stretching ratio, and solid volume fraction of nanoparticles are also displayed and discussed. It is observed that an increase in solid volume fraction of nanoparticles enhances the magnitude of normal skin friction coefficient, tangential skin friction coefficient, and local heat flux. Viscosity parameter is found to have decreasing effect on normal and tangential skin friction coefficients whereas it has a positive influence on local heat flux.


Author(s):  
Tom I-Ping Shih ◽  
Srisudarshan Krishna Sathyanarayanan

Convective heat transfer over surfaces is generally presented in the form of the heat-transfer coefficient (h) or its nondimensional form, the Nusselt number (Nu). Both require the specification of the free-stream temperature (Too) or the bulk (Tb) temperature, which are clearly defined only for simple configurations. For complicated configurations with flow separation and multiple temperature streams, the physical significance of Too and Tb becomes unclear. In addition, their use could cause the local h to approach positive or negative infinity if Too or Tb is nearly the same as the local wall temperature (Twall). In this paper, a new Nusselt number, referred to as the SCS number, is proposed, that provides information on the local heat flux but does not use h and hence by-passes the need to define Too or Tb. CFD analysis based on steady RANS with the shear-stress transport model is used to compare and contrast the SCS number with Nu for two test problems: (1) compressible flow and heat transfer in a straight duct with a circular cross section and (2) compressible flow and heat transfer in a high-aspect ratio rectangular duct with a staggered array of pin fins. Parameters examined include: Reynolds number at the duct inlet (3,000 to 15,000 for the circular duct and 15,000 and 150,000 for the rectangular duct), wall temperature (Twall = 373 K to 1473 K for the circular duct and 313 K and 1,173 K for the rectangular duct), and distance from of the inlet of the duct (up to 100D for the circular duct and up to 156D for the rectangular duct). For the circular duct, Nu was found to decrease rapidly from the duct inlet until reaching a minimum and then to rise until reaching a nearly constant value in the “fully” developed region if the wall is heating the gas. If the wall is cooling the gas, then Nu has a constant positive slope in the “fully” developed region. The location of the minimum in Nu and where Nu becomes nearly constant in value or in slope are strong functions of Twall. For the SCS number, the decrease from the duct inlet is monotonic with a negative slope, whether the wall is heating or cooling the gas. Also, different SCS curves for different Twall approach each other as the distance from the inlet increases. For the rectangular duct, Nu tends to oscillate about a constant value in the pin-fin region, whereas SCS tends to oscillate about a line with a negative slope. For both test problems, the variation of SCS is not more complicated than Nu, but SCS yields the local heat flux without need for Tb, a parameter that is hard to define and measure for complicated problems.


2020 ◽  
Vol 2020 (0) ◽  
pp. 0187
Author(s):  
Masanori Morisaki ◽  
Shota Minami ◽  
Koji Miyazaki ◽  
Tomohide Yabuki

2005 ◽  
Vol 128 (1) ◽  
pp. 32-39 ◽  
Author(s):  
Yuan Lin ◽  
Timothy C. Ovaert

The thermal surface distortion of an anisotropic elastic half-plane is studied using the extended version of Stroh’s formalism. In general, the curvature of the surface depends both on the local heat flux into the half-plane and the local temperature variation along the surface. However, if the material is orthotropic, the curvature of the surface depends only on the local heat flux into the half-plane. As a direct application, the two-dimensional thermoelastic contact problem of an indenter sliding against an orthotropic half-plane is considered. Two cases, where the indenter has either a flat or a parabolic profile, are studied in detail. Comparisons with other available results in the literature show that the present method is correct and accurate.


Author(s):  
Jungho Lee ◽  
Cheong-Hwan Yu ◽  
Sang-Jin Park

Water spray cooling is an important technology which has been used in a variety of engineering applications for cooling of materials from high-temperature nominally up to 900°C, especially in steelmaking processes and heat treatment in hot metals. The effects of cooling water temperature on spray cooling are significant for hot steel plate cooling applications. The local heat flux measurements are introduced by a novel experimental technique in which test block assemblies with cartridge heaters and thermocouples are used to measure the heat flux distribution on the surface of hot steel plate as a function of heat flux gauge. The spray is produced from a fullcone nozzle and experiments are performed at fixed water impact density of G and fixed nozzle-to-target spacing. The results show that effects of water temperature on forced boiling heat transfer characteristics are presented for five different water temperatures between 5 to 45°C. The local heat flux curves and heat transfer coefficients are also provided to a benchmark data for the actual spray cooling of hot steel plate cooling applications.


Sign in / Sign up

Export Citation Format

Share Document