scholarly journals Radiative heat transfer calculation for mixture of gases using full spectrum k-distribution method

2021 ◽  
Vol 2116 (1) ◽  
pp. 012065
Author(s):  
Kamal Khemani ◽  
Pradeep Kumar

Abstract The full spectrum k-distribution method is used to obtain radiative heat flux and divergence of radiative heat flux for two test cases, containing mixture of CO 2 and H 2 O at different concentration and temperature keeping pressure constant. The k-distribution for mixture of gases is obtained from individual gas k-distribution using three different mixing models, viz., superposition, multiplication and hybrid model. Further, the radiative transfer equation (RTE) is solved by the finite volume discrete ordinate method (FVDOM) to obtain the radiative flux and the radiation source term. The results obtained were compared with the FSK from spectral addition and LBL method. The multiplication mixing model provides better accuracy compared to other mixing models considered in the present study.

2021 ◽  
Vol 2116 (1) ◽  
pp. 012066
Author(s):  
Shreesh Parvatikar ◽  
Kamal Khemani ◽  
Pradeep Kumar

Abstract Three test cases in the categories of homogeneous non-isothermal, non-homogeneous isothermal and non-homogeneous non-isothermal have been developed to validate the two-dimensional interpolation technique for calculation of non-gray radiative heat flux on the walls of the system. The participating gases H 2 O and CO 2 of different mole fractions and temperatures are considered in different zones of the test cases. HITEMP-2010 database has been used to calculate the absorption coefficients of H 2 O and CO 2 at different mole fractions and temperatures. Further, the random variation of absorption coefficients with spectrum has been reordered in smooth monotonically increasing smooth function using full spectrum k-distribution method (FSK). A look-up table is developed for different mole fractions and temperatures of gases H 2 O and CO 2. The calculation of absorption coefficients at thermodynamic states other than look up table has been performed using two dimensional interpolation techniques. The geometry of test cases have been divided into three zones whose conditions on the first and last zones are same as available in look-up table while interpolation is used for the middle zone. The radiative transfer equation is solved numerically by finite volume discrete ordinate method (FVDOM). The results have been compared with FSK method and have been found that interpolation techniques are giving satisfactory results with extremely less computational resource and time.


Author(s):  
T. E. Magin ◽  
L. Caillault ◽  
A. Bourdon ◽  
C. O. Laux

2000 ◽  
Author(s):  
Christian Proulx ◽  
Daniel R. Rousse ◽  
Rodolphe Vaillon ◽  
Jean-François Sacadura

Abstract This article presents selected results of a study comparing two procedures for the treatment of collimated irradiation impinging on one boundary of a participating one-dimensional plane-parallel medium. These procedures are implemented in a CVFEM used to calculate the radiative heat flux and source. Both isotropically and anisotropically scattering media are considered. The results presented show that both procedures provide results in good agreement with those obtained using a Monte Carlo method, when the collimated beam impinges normally.


Author(s):  
Thomas Vega ◽  
Rachel A. Wasson ◽  
Brian Y. Lattimer ◽  
Thomas E. Diller

Author(s):  
David L. Damm ◽  
Andrei G. Fedorov

Thermo-mechanical failure of components in planar-type solid oxide fuel cells (SOFCs) depends strongly on the local temperature gradients at the interfaces of different materials. Therefore, it is of paramount importance to accurately predict the temperature fields within the stack, especially near the interfaces. Because of elevated operating temperatures (of the order of 1000 K or even higher), radiation heat transfer could become a dominant mode of heat transfer in the SOFCs. In this study, we extend our recent work on radiative effects in solid oxide fuel cells (Journal of Power Sources, Vol. 124, No. 2, pp. 453–458) by accounting for the spectral dependence of the radiative properties of the electrolyte material. The measurements of spectral radiative properties of the polycrystalline yttria-stabilized zirconia (YSZ) electrolyte we performed indicate that an optically thin approximation can be used for treatment of radiative heat transfer. To this end, the Schuster-Schwartzchild two-flux approximation is used to solve the radiative transfer equation (RTE) for the spectral radiative heat flux, which is then integrated over the entire spectrum using an N-band approximation to obtain the total heat flux due to thermal radiation. The divergence of the total radiative heat flux is then incorporated as a heat sink into a 3-D thermo-fluid model of a SOFC through the user-defined function utility in the commercial FLUENT CFD software. The results of sample calculations are reported and compared against the baseline cases when no radiation effects are included and when the spectrally gray approximation is used for treatment of radiative heat transfer.


Sign in / Sign up

Export Citation Format

Share Document