scholarly journals Effect of PCM fill ratio and heat sink orientation on the thermal management of transient power spikes in electronics

2021 ◽  
Vol 2116 (1) ◽  
pp. 012077
Author(s):  
Rajesh Akula ◽  
Chakravarthy Balaji

Abstract The goal of this paper is to investigate the usefulness of Phase Change Material based heat sinks in power surge operations. Experiments have been carried out on a PCM based heat sink for different fill ratios (0, 33, 66, and 99%) of the PCM and different orientations (0, 90, 180°) of the heat sink under constant and power surge heat loads. The heat sink with a fill ratio of 0% is considered as the baseline case for comparison. The heat sink with a fill ratio of 66% at 0° orientation recorded lower temperatures among all the fill ratios and orientations under both constant and power surge heat loads. Partial filling (66% fill ratio) of the PCM in the cavity is more effective than complete filling (99% fill ratio) in handling both constant and power surge heat loads.

2018 ◽  
Vol 132 ◽  
pp. 52-66 ◽  
Author(s):  
Adeel Arshad ◽  
Hafiz Muhammad Ali ◽  
Wei-Mon Yan ◽  
Ahmed Kadhim Hussein ◽  
Majid Ahmadlouydarab

Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2558 ◽  
Author(s):  
Preeti Singh ◽  
Sourav Khanna ◽  
Sanjeev Newar ◽  
Vashi Sharma ◽  
K. Reddy ◽  
...  

Phase change material (PCM) based passive cooling of photovoltaics (PV) can be highly productive due to high latent heat capacity. However, the low rate of heat transfer limits its usefulness. Thus, the presented work aims at the improvement in PV cooling by using finned PCM (FPCM) heat sinks. In the present study, PCM heat sink and FPCM heat sinks were investigated numerically for PV cooling and the extracted heat is used for space heating. 4 kWp PV, PV-PCM and PV-FPCM systems were studied under the weather conditions of Southeast of England. It was observed that the PCM heat sinks can drop the peak PV temperature by 13 K, whereas FPCM heat sinks can enhance the PV cooling by 19 K. The PCM heat sinks can increase the PV electrical efficiency from 13% to 14%. Moreover, the daily electricity generation can be boosted by 7% using PCM and 8% by using FPCM heat sinks. In addition, 7 kWh of thermal output was achieved using the FPCM heat sink, and the overall efficiency of system increased from 13% to 19%.


Author(s):  
Mohamed Emam ◽  
Mahmoud Ahmed ◽  
Shinichi Ookawara

In the current work, a hybrid system including Concentrated photovoltaic (CPV) and phase change material (PCM) as a heat sink is considered as a single module to achieve high solar conversion efficiency. The main objective is to accelerate the thermal dissipation with a longer thermal regulation period. Thus, a new CPV-PCM system using various configurations of the PCM heat sink and different combinations of PCMs is investigated. This study presents a numerical simulation of the effects of PCM materials and designs on the CPV-PCM system performance. To estimate the thermal performance of the new CPV-PCM system, a comprehensive 2-D model for CPV layers integrated with PCMs is developed. This model couples a thermal model for CPV layers and a thermo-fluid model that considers the phase-change phenomenon using the enthalpy method. The model is numerically simulated at different configurations and combinations of PCM with various ranges of phase transition temperatures. Three different configurations of PCMs are investigated: one with a single cavity, and two with parallel arrangements including three and five cavities. Results indicate that the use of PCM heat sinks with three and five cavities increases the heat transfer inside the PCM and achieves a significant reduction of the solar cell temperature compared with a single cavity CPV-PCM system. Furthermore, thermal regulation effect and temperature uniformity of the CPV-PCM system is enhanced by using various combinations of PCMs.


2020 ◽  
Vol 32 ◽  
pp. 101971
Author(s):  
Muhammad Aamer Hayat ◽  
Hafiz Muhammad Ali ◽  
Muhammad Mansoor Janjua ◽  
William Pao ◽  
Changhe Li ◽  
...  

2008 ◽  
Vol 130 (3) ◽  
Author(s):  
S. K. Saha ◽  
K. Srinivasan ◽  
P. Dutta

This paper deals with phase change material (PCM), used in conjunction with thermal conductivity enhancer (TCE), as a means of thermal management of electronic systems. Eicosane is used as PCM, while aluminium pin or plate fins are used as TCE. The test section considered in all cases is a 42×42mm2 base with a TCE height of 25mm. An electrical heater at the heat sink base is used to simulate the heat generation in electronic chips. Various volumetric fractions of TCE in the conglomerate of PCM and TCE are considered. The case with 8% TCE volume fraction was found to have the best thermal performance. With this volume fraction of TCE, the effects of fin dimension and fin shape are also investigated. It is found that a large number of small cross-sectional area fins is preferable. A numerical model is also developed to enable an interpretation of experimental results.


Sign in / Sign up

Export Citation Format

Share Document