scholarly journals Thermal Management System Using Phase Change Material for Lithium-ion Battery

2021 ◽  
Vol 2117 (1) ◽  
pp. 012005
Author(s):  
E Grimonia ◽  
M R C Andhika ◽  
M F N Aulady ◽  
R V C Rubi ◽  
N L Hamidah

Abstract The lithium-ion battery is promising energy storage that provides proper stability, no memory effect, low self-discharge rate, and high energy density. During its usage, batteries generate heat caused by energy loss due to the transition of chemical energy to electricity and the electron transfer cycle. Consequently, a thermal management system by cooling methods in the battery is needed to control heat. One of the cooling methods is a passive cooling system using a phase change material (PCM). PCM can accommodate a large amount of heat through small dimensions. It is easy to apply and requires no power in the cooling system. This study aims to find the best type of PCM criteria for a Lithium-ion battery cooling system. The research was conducted by simulations using computational fluid dynamics. The variations were using PCM Capric Acid and PCM Hexacosane, with thickness variations of 3 mm, 6 mm, and 9 mm. Hexacosane PCM with 9 mm thickness indicates the best result to reduce heat up to 6.54°K, demonstrating a suitable passive cooling system for Li-ion batteries.

Electrochem ◽  
2020 ◽  
Vol 1 (4) ◽  
pp. 439-449
Author(s):  
Seyed Saeed Madani ◽  
Erik Schaltz ◽  
Søren Knudsen Kær

A new heat transfer enhancement approach was proposed for the cooling system of lithium-ion batteries. A three-dimensional numerical simulation of the passive thermal management system for a battery pack was accomplished by employing ANSYS Fluent (Canonsburg, PA, USA). Phase change material was used for the thermal management of lithium-ion battery modules and as the heat transmission source to decrease battery temperature in fast charging and discharge conditions. Constant current charge and discharge were applied to lithium-ion battery modules. In the experimental part of the research, an isothermal battery calorimeter was used to determine the heat dissipation of lithium-ion batteries. Thermal performance was simulated for the presence of phase change material composites. Simulation outcomes demonstrate that phase change material cooling considerably decreases the lithium-ion battery temperature increase during fast charging and discharging conditions use. The greatest temperature at the end of 9 C, 7 C, 5 C, and 3 C charges and discharges were approximately 49.7, 44.6, 38.4, and 33.1 °C, respectively, demonstrating satisfactory performance in lithium-ion battery thermal homogeneity of the passive thermal management system.


Author(s):  
Ali Deriszadeh ◽  
Filippo de Monte ◽  
Marco Villani

Abstract This study investigates the cooling performance of a passive cooling system for electric motor cooling applications. The metal-based phase change materials are used for cooling the motor and preventing its temperature rise. As compared to oil-based phase change materials, these materials have a higher melting point and thermal conductivity. The flow field and transient heat conduction are simulated using the finite volume method. The accuracy of numerical values obtained from the simulation of the phase change materials is validated. The sensitivity of the numerical results to the number of computational elements and time step value is assessed. The main goal of adopting the phase change material based passive cooling system is to maintain the operational motor temperature in the allowed range for applications with high and repetitive peak power demands such as electric vehicles by using phase change materials in cooling channels twisted around the motor. Moreover, this study investigates the effect of the phase change material container arrangement on the cooling performance of the under study cooling system.


Sign in / Sign up

Export Citation Format

Share Document