scholarly journals Numerical simulation of flow dynamics and heat transfer in a rectangular channel with periodic ribs on one of the walls

2021 ◽  
Vol 2119 (1) ◽  
pp. 012028
Author(s):  
A V Barsukov ◽  
V V Terekhov ◽  
V I Terekhov

Abstract The result of numerical simulation of a turbulent flow in a flat channel with a periodic transverse rib by the RANS and LES methods is presented. The Reynolds number, calculated from the rib height and the superficial velocity, is Re = 12600. The data obtained as a result of the study demonstrate the influence of the modeling method and the turbulence model on the quality of heat transfer prediction. The optimal model for this type of problems is presented.

2021 ◽  
Vol 2119 (1) ◽  
pp. 012027
Author(s):  
A V Barsukov ◽  
V V Terekhov ◽  
V I Terekhov

Abstract The results of numerical simulation of a turbulent flow in a flat channel with periodic inclined ribs by the RANS method are presented. The Reynolds number, calculated from the rib height and the superficial velocity, is Re = 12600. The obtained data are analyzed in order to determine the influence of the inclination angle on heat transfer. It is shown that the optimal angle of inclination, at which the average heat transfer in the channel is maximum, is 60°.


Author(s):  
M. Yang ◽  
L. Q. Yang ◽  
W. Lu ◽  
L. Li ◽  
Q. X. Liu ◽  
...  

Numerical simulation of forced flow in sudden-expansion followed by sudden-contraction rectangular channel was presented for the whole flow region. The nonlinear flow and heat transfer characteristics were investigated by various Reynolds number and geometrical dimension and the critical Reynolds numbers under different conditions have been calculated. The results show flow and heat transfer from symmetric state to asymmetric state with the increase of Re. When Re<Rec (critical Reynolds number for flow transformation), the symmetric state is stable. On the other hand, when Re ≥Rec, the flow loses stability and from symmetric to asymmetric via a symmetry-breaking bifurcation. And the heat transfer performance have relevant characteristics as fluid flow.


2021 ◽  
Vol 2039 (1) ◽  
pp. 012003
Author(s):  
A V Barsukov ◽  
V V Terekhov ◽  
V I Terekhov

Abstract The results of numerical simulation of a turbulent flow in a flat channel in the presence of vortex generators in the form of periodic solid ribs by the RANS and LES method are presented. The Reynolds number calculated by the rib height and the average flow rate is Re = 12600. The influence of the distance between the ribs on the flow structure is investigated. The boundaries of different types of roughness and their influence on the heat transfer intensity are shown.


2010 ◽  
Vol 37 (5) ◽  
pp. 447-457
Author(s):  
Mitsuhiro Aoyagi ◽  
Hidetoshi Hashizume ◽  
Kazuhisa Yuki ◽  
Satoshi Ito ◽  
Takeo Muroga

2019 ◽  
Vol 139 (6) ◽  
pp. 3711-3724
Author(s):  
Farzad Pourfattah ◽  
Omid Ali Akbari ◽  
Vahid Jafrian ◽  
Davood Toghraie ◽  
Elnaz Pourfattah

Author(s):  
Sam Ghazi-Hesami ◽  
Dylan Wise ◽  
Keith Taylor ◽  
Peter Ireland ◽  
Étienne Robert

Abstract Turbulators are a promising avenue to enhance heat transfer in a wide variety of applications. An experimental and numerical investigation of heat transfer and pressure drop of a broken V (chevron) turbulator is presented at Reynolds numbers ranging from approximately 300,000 to 900,000 in a rectangular channel with an aspect ratio (width/height) of 1.29. The rib height is 3% of the channel hydraulic diameter while the rib spacing to rib height ratio is fixed at 10. Heat transfer measurements are performed on the flat surface between ribs using transient liquid crystal thermography. The experimental results reveal a significant increase of the heat transfer and friction factor of the ribbed surface compared to a smooth channel. Both parameters increase with Reynolds number, with a heat transfer enhancement ratio of up to 2.15 (relative to a smooth channel) and a friction factor ratio of up to 6.32 over the investigated Reynolds number range. Complementary CFD RANS (Reynolds-Averaged Navier-Stokes) simulations are performed with the κ-ω SST turbulence model in ANSYS Fluent® 17.1, and the numerical estimates are compared against the experimental data. The results reveal that the discrepancy between the experimentally measured area averaged Nusselt number and the numerical estimates increases from approximately 3% to 13% with increasing Reynolds number from 339,000 to 917,000. The numerical estimates indicate turbulators enhance heat transfer by interrupting the boundary layer as well as increasing near surface turbulent kinetic energy and mixing.


2021 ◽  
Author(s):  
Zeyu Wu ◽  
Xiang Luo ◽  
Jianqin Zhu ◽  
Zhe Zhang ◽  
Jiahua Liu

Abstract The aeroengine turbine cavity with pre-swirl structure makes the turbine component obtain better cooling effect, but the complex design of inlet and outlet makes it difficult to determine the heat transfer reference temperature of turbine disk. For the pre-swirl structure with two air intakes, the driving temperature difference of heat transfer between disk and cooling air cannot be determined either in theory or in test, which is usually called three-temperature problem. In this paper, the three-temperature problem of a rotating cavity with two cross inlets are studied by means of experiment and numerical simulation. By substituting the adiabatic wall temperature for the inlet temperature and summarizing its variation law, the problem of selecting the reference temperature of the multi-inlet cavity can be solved. The results show that the distribution of the adiabatic wall temperature is divided into the high jet area and the low inflow area, which are mainly affected by the turbulence parameters λT, the rotating Reynolds number Reω, the high inlet temperature Tf,H* and the low radius inlet temperature Tf,L* of the inflow, while the partition position rd can be considered only related to the turbulence parameters λT and the rotating Reynolds number Reω of the inflow. In this paper, based on the analysis of the numerical simulation results, the calculation formulas of the partition position rd and the adiabatic wall temperature distribution are obtained. The results show that the method of experiment combined with adiabatic wall temperature zone simulation can effectively solve the three-temperature problem of rotating cavity.


2006 ◽  
Vol 129 (3) ◽  
pp. 769-777 ◽  
Author(s):  
Paul Lewis ◽  
Mike Wilson ◽  
Gary Lock ◽  
J. Michael Owen

This paper compares heat transfer measurements from a preswirl rotor–stator experiment with three-dimensional (3D) steady-state results from a commercial computational fluid dynamics (CFD) code. The measured distribution of Nusselt number on the rotor surface was obtained from a scaled model of a gas turbine rotor–stator system, where the flow structure is representative of that found in an engine. Computations were carried out using a coupled multigrid Reynolds-averaged Navier-Stokes (RANS) solver with a high Reynolds number k-ε∕k-ω turbulence model. Previous work has identified three parameters governing heat transfer: rotational Reynolds number (Reϕ), preswirl ratio (βp), and the turbulent flow parameter (λT). For this study rotational Reynolds numbers are in the range 0.8×106<Reϕ<1.2×106. The turbulent flow parameter and preswirl ratios varied between 0.12<λT<0.38 and 0.5<βp<1.5, which are comparable to values that occur in industrial gas turbines. Two performance parameters have been calculated: the adiabatic effectiveness for the system, Θb,ad, and the discharge coefficient for the receiver holes, CD. The computations show that, although Θb,ad increases monotonically as βp increases, there is a critical value of βp at which CD is a maximum. At high coolant flow rates, computations have predicted peaks in heat transfer at the radius of the preswirl nozzles. These were discovered during earlier experiments and are associated with the impingement of the preswirl flow on the rotor disk. At lower flow rates, the heat transfer is controlled by boundary-layer effects. The Nusselt number on the rotating disk increases as either Reϕ or λT increases, and is axisymmetric except in the region of the receiver holes, where significant two-dimensional variations are observed. The computed velocity field is used to explain the heat transfer distributions observed in the experiments. The regions of peak heat transfer around the receiver holes are a consequence of the route taken by the flow. Two routes have been identified: “direct,” whereby flow forms a stream tube between the inlet and outlet; and “indirect,” whereby flow mixes with the rotating core of fluid.


Sign in / Sign up

Export Citation Format

Share Document