scholarly journals Numerical simulation of a separated flow in a ribbed channel by the RANS and LES methods

2021 ◽  
Vol 2039 (1) ◽  
pp. 012003
Author(s):  
A V Barsukov ◽  
V V Terekhov ◽  
V I Terekhov

Abstract The results of numerical simulation of a turbulent flow in a flat channel in the presence of vortex generators in the form of periodic solid ribs by the RANS and LES method are presented. The Reynolds number calculated by the rib height and the average flow rate is Re = 12600. The influence of the distance between the ribs on the flow structure is investigated. The boundaries of different types of roughness and their influence on the heat transfer intensity are shown.

2021 ◽  
Vol 2119 (1) ◽  
pp. 012027
Author(s):  
A V Barsukov ◽  
V V Terekhov ◽  
V I Terekhov

Abstract The results of numerical simulation of a turbulent flow in a flat channel with periodic inclined ribs by the RANS method are presented. The Reynolds number, calculated from the rib height and the superficial velocity, is Re = 12600. The obtained data are analyzed in order to determine the influence of the inclination angle on heat transfer. It is shown that the optimal angle of inclination, at which the average heat transfer in the channel is maximum, is 60°.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012028
Author(s):  
A V Barsukov ◽  
V V Terekhov ◽  
V I Terekhov

Abstract The result of numerical simulation of a turbulent flow in a flat channel with a periodic transverse rib by the RANS and LES methods is presented. The Reynolds number, calculated from the rib height and the superficial velocity, is Re = 12600. The data obtained as a result of the study demonstrate the influence of the modeling method and the turbulence model on the quality of heat transfer prediction. The optimal model for this type of problems is presented.


2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Felipe A. S. Silva ◽  
Luis Júnior ◽  
José Silva ◽  
Sandilya Kambampati ◽  
Leandro Salviano

AbstractSolar Water Heater (SWH) has low efficiency and the performance of this type of device needs to be improved to provide useful and ecological sources of energy. The passive techniques of augmentation heat transfer are an effective strategy to increase the convective heat transfer coefficient without external equipment. In this way, recent investigations have been done to study the potential applications of different inserts including wire coils, vortex generators, and twisted tapes for several solar thermal applications. However, few researchers have investigated inserts in SWH which is useful in many sectors where the working fluid operates at moderate temperatures. The longitudinal vortex generators (LVG) have been applied to promote heat transfer enhancement with a low/moderate pressure drop penalty. Therefore, the present work investigated optimal geometric parameters of LVG to enhance the heat transfer for a SWH at low Reynolds number and laminar flow, using a 3D periodical numerical simulation based on the Finite Volume Method coupled to the Genetic Algorithm optimization method (NSGA-II). The LVG was stamped over a flat plate inserted inside a smooth tube operating under a typical residential application corresponding to Reynolds numbers of 300, 600, and 900. The geometric parameters of LGV were submitted to the optimization procedure which can find traditional LVG such as rectangular-winglet and delta-winglet or a mix of them. The results showed that the application of LGVs to enhance heat transfer is an effective passive technique. The different optimal shapes of the LVG for all Reynolds numbers evaluated improved more than 50% of heat transfer. The highest augmentation heat transfer of 62% is found for the Reynolds number 900. However, the best thermo-hydraulic efficiency value is found for the Reynolds number of 600 in which the heat transfer intensification represents 55% of the pressure drop penalty.


2021 ◽  
Author(s):  
Zeyu Wu ◽  
Xiang Luo ◽  
Jianqin Zhu ◽  
Zhe Zhang ◽  
Jiahua Liu

Abstract The aeroengine turbine cavity with pre-swirl structure makes the turbine component obtain better cooling effect, but the complex design of inlet and outlet makes it difficult to determine the heat transfer reference temperature of turbine disk. For the pre-swirl structure with two air intakes, the driving temperature difference of heat transfer between disk and cooling air cannot be determined either in theory or in test, which is usually called three-temperature problem. In this paper, the three-temperature problem of a rotating cavity with two cross inlets are studied by means of experiment and numerical simulation. By substituting the adiabatic wall temperature for the inlet temperature and summarizing its variation law, the problem of selecting the reference temperature of the multi-inlet cavity can be solved. The results show that the distribution of the adiabatic wall temperature is divided into the high jet area and the low inflow area, which are mainly affected by the turbulence parameters λT, the rotating Reynolds number Reω, the high inlet temperature Tf,H* and the low radius inlet temperature Tf,L* of the inflow, while the partition position rd can be considered only related to the turbulence parameters λT and the rotating Reynolds number Reω of the inflow. In this paper, based on the analysis of the numerical simulation results, the calculation formulas of the partition position rd and the adiabatic wall temperature distribution are obtained. The results show that the method of experiment combined with adiabatic wall temperature zone simulation can effectively solve the three-temperature problem of rotating cavity.


Author(s):  
Yurii G. Chesnokov ◽  

Using the results obtained by the method of direct numerical simulation of the heat transfer process in a flat channel by various authors, it is shown that at small values of Prandtl number quite a few characteristics of the heat transfer process in a flat channel depend not on Reynolds and Prandtl numbers separately, but on Peclet number. Peclet number is calculated from the so-called dynamic speed


2021 ◽  
Vol 2057 (1) ◽  
pp. 012026
Author(s):  
A V Barsukov ◽  
V V Terekhov ◽  
V I Terekhov

Abstract The results of numerical simulation of the separation flow in matrix channels by the RANS method are presented. The simulation is performed at the Reynolds number Re = 12600, determined by the mass-average velocity and the height of the channel. The distribution of the local Nusselt number is obtained for various Reynolds numbers in the range of 5÷15⋅103 and several rib angles. It is shown that the temperature distribution on the surface is highly nonuniform; in particular, the maximum heat transfer value is observed near the upper edge facets, in the vicinity of which the greatest velocity gradient is observed.


Author(s):  
Teerapat Chompookham ◽  
Chinaruk Thianpong ◽  
Sutapat Kwankaomeng ◽  
Pongjet Promvonge

Sign in / Sign up

Export Citation Format

Share Document