scholarly journals Single loop PID controller design based on optimization algorithms for parallelly connected dc-dc converters

2021 ◽  
Vol 2128 (1) ◽  
pp. 012027
Author(s):  
Allam M. Allam ◽  
A.S. Ibrahim ◽  
Essam Nabil

Abstract This paper addresses a viable single loop PID controller on the bases of optimization algorithms for parallelly connected DC-DC converters to improve current sharing, improve the systems dynamics and guarantee good steady-state performance simultaneously. Because of inconvenience and lack of accuracy of Ziegler-Nichols rule in tuning PID controller parameters, an optimized controller design strategy with the purpose of enhancing the system performance is introduced in this paper. The PID is tuned by the traditional Ziegler -Nichols technique along with three other different algorithms: Genetic algorithm, whale algorithm and grey wolf algorithm. A comparison has been established between these algorithms based on the objective function value, execution time, overshoot, settling time and current sharing. The simulation results were collected to authenticate effectiveness of the proposed techniques and to evaluate the advantages of these optimization algorithms over the traditional tuning method.

2012 ◽  
Vol 531-532 ◽  
pp. 726-731
Author(s):  
Yue Hua Xiong ◽  
Chun Liang Zhang ◽  
Bai Xiang Fu

This paper focus on designing a fuzzy PID controller design about the vapor pressure of the EPE foaming machine parameters, and raise a self-tuning method of PID parameters, and use the fuzzy control toolbox of MATLAB to simulate its control system, which are compared with the simulation of conventional PID controller, the results show the design of fuzzy PID controller have high control precision, small overshoot, good dynamic performance characteristics.


Author(s):  
Mostafa Abdul Fellani ◽  
Aboubaker M. Gabaj

The industrial application of Coupled Tank System (CTS) is widely used especially in chemical process industries. The control of liquid level in tanks and flow between tanks is a problem in the process technologies. The process technologies require liquids to be pumped, stored in tanks, and then pumped to another tank systematically. This paper presents development of Proportional-Integral-Derivative (PID) controller for controlling the desired liquid level of the CTS. Various conventional techniques of PID tuning method will be tested in order to obtain the PID controller parameters. Simulation is conducted within MATLAB environment to verify the performances of the system in terms of Rise Time (Ts), Settling Time (Ts), Steady State Error (SSE) and Overshoot (OS). The trial and error method of tunning will be implemented and all the performance results will be analyzed using MATLAB. It has been demonstrated that performances of CTS can be improved with appropriate technique of PID tuning methods.


Sign in / Sign up

Export Citation Format

Share Document