scholarly journals Analysis of compensating devices efficiency in ac traction power supply systems

2021 ◽  
Vol 2131 (4) ◽  
pp. 042083
Author(s):  
A V Agunov ◽  
D A Sokolov

Abstract The article describes the main methods of reactive power compensation used in 27.5 kV AC traction power supply systems on the railways of the Russian Federation. The cases of installation of the longitudinal and transverse capacitive compensation devices at traction substation and sectiolizing post are considered in this paper. Based on experimental data their effectiveness has been analysed by comparing the main parameters of the traction power supply system before and after the installation of the compensating devices. The main effect in terms of power consumption reduction is achieved through application of reactive power cross-compensation devices. The results of the analysis show that the total electricity consumption in the researched area decreased by 23 % and the proportion of higher harmonic elements of voltage decreased by 15 %.

2019 ◽  
Vol 110 ◽  
pp. 01010
Author(s):  
Vasiliy Cheremisin ◽  
Andrey Nikonov

The article presents a method for selecting the parameters of the current-voltage characteristics of adjustable reactive power compensation devices used at sectioning stations of railway sections electrified by alternating current with a voltage of 27.5 kV. This technique is based on the experience of operating two types of devices in the traction power supply system. Power control of these devices is implemented by the voltage level at the switching point. Selection of the setpoint voltage and slope characteristics was done. The developed method allows increasing the efficiency of devices by eliminating the voltage losses on the active component of traction loads. That will reduce the loss of electricity in the system of traction power supply. Changing the parameters of the characteristics will increase the relationship between the reactive power consumed in the zone and the voltage measured by the devices. Following the results of the formation of the methodology, an example of the choice of characteristics for a real compensation device is presented.


2018 ◽  
Vol 239 ◽  
pp. 01049 ◽  
Author(s):  
Natalia Shurova ◽  
Valerii Li

In the past few years, there has been a trend towards an increase in the volume of transportation by railway. At the same time, the load on the railway infrastructure increases, in particular, on the traction power supply system. It is necessary to solve the problem of increasing the energy efficiency of the external electric power supply system in the conditions of growing freight turnover and taking into account the uncertainty of the initial data. The paper considers one of the methods of strengthening the traction power supply system. Based on the results of the study, an algorithm was developed for selecting the installation sites and power of compensating devices in a traction network in the conditions of increasing freight turnover and under the condition of increasing the energy efficiency of the external power supply system of traction substations due to unloading of supply lines by reactive power and leveling the load in phases. This methodology includes predicting power consumption, determining the installation sites and power of compensating devices in the traction network under condition of uncertainty of the initial data, and then assessing the energy efficiency of the decision made. A calculation was carried out for the proposed algorithm for a section of the Far Eastern Railway which includes nine traction substations.


Author(s):  
Shu Cheng ◽  
Chang Liu ◽  
Jianxiang Tang ◽  
Tianjian Yu ◽  
Kaidi Li

Co-phase power supply is one of the key technologies to solve the technical bottlenecks such as electrical phase separation zone, poor power quality and defects in structure and control algorithms in traditional traction power supply systems and single co-phase power supply schemes, and an inevitable way to realize the development of electrified railways in the direction of safety, high speed and heavy load. Based on the single co-phase power supply technology, a novel quadruple co-phase power supply scheme with negative sequence elimination and to suppress reactive power and harmonic better for the two aspects of the system structure improvement and control algorithm optimization is proposed by combining the technologies of power system flexible transmission grid-connected and multiple inverters. Finally, the simulation model for the novel co-phase traction power supply system was designed and built, and the present method was verified by a set of simulation experiments so as to obtain the expected results.


2021 ◽  
Vol 284 ◽  
pp. 06002
Author(s):  
Ivan Ignatenko ◽  
Sergey Vlasenko ◽  
Evgeniy Tryapkin ◽  
Vladimir Kovalev

Increased freight turnover on railway transport inevitably leads to increased traction current in DC and AC traction power supply systems. The increase in traction current is already causing problems related to the normal operation of the 25 kV AC traction power supply systems. One of the adverse consequences of the increased traction currents is the increased rail-to-ground potential. This has already caused a number of accidents and related traffic interruptions on the Far Eastern Railway of Russia and other railway sections powered with alternating current. The study considers the problem of increased rail-to-ground potentials and provides basic formulae for calculating the wave parameters of the rail network and rail-to-ground potentials. Various methods are given for calculating rail-to-ground potentials for a 25 kV AC traction power supply system. Since in an alternating current system, expressions for calculating the potential are functions of a complex variable, the calculation of such expressions requires the use of special programs. Adaptation of existing methods to modern software and computing systems allows you to optimize and significantly speed up the process of calculating the “rail-to-ground” potentials, either considering the use of certain potential-reducing measures or not. A calculation method includes an algorithm developed for calculating the rail-to-ground potentials in the 25 kV AC traction power supply system for an inter-substation zone of any length with any number of electric locomotives within the zone.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 656
Author(s):  
Yaoguo Li ◽  
Jiaxi Hu ◽  
Zhaohui Tang ◽  
Yongfang Xie ◽  
Fangyuan Zhou

Railway static power conditioners (RPC) usually improve the power quality of traction power supply systems only according to the active power of the load, which leads to inaccurate compensation. There are two factors that restrict the performance of RPC, one of which is the reactive power of the load, and the other is the system error. In order to eliminate the compensation error, a compensation optimization method is proposed. First, calculate the reactive power compensation value for the reactive power of the load. Second, introduce the amplitudes and phases of the primary currents of the V/v transformer as references for the compensation error caused by the system loss and then use fuzzy control to optimize compensation. The compensation method proposed in this paper is actually a feedforward control. In addition, this method balances the three-phase currents and enables RPC to be used in railway power supply systems with low locomotive power factors. The effectiveness of the method proposed in this paper has been confirmed by the simulation results.


Sign in / Sign up

Export Citation Format

Share Document