scholarly journals Efficient realization of infrared coherent radiation by the method of parametric light amplification in nonlinear photonic crystals

2021 ◽  
Vol 2131 (5) ◽  
pp. 052092
Author(s):  
O Sabirov ◽  
N Akbarova ◽  
N Atadjanova ◽  
U Sapaev

Abstract The process of parametric amplification of light from short laser pulses in nonlinear photonic crystals is analyzed numerically. The calculations were carried out taking into account the effects of the dispersion of the medium up to the third order and cubic nonlinearity of the Kerr type. It is shown that a change in the size of domains can significantly affect the formation of a signal wave pulse. On the basis of the results obtained, we analyzed the optimal values of the domain size at which the efficient energetic generation of the signal wave is observed.

2005 ◽  
Vol 277-279 ◽  
pp. 1049-1053 ◽  
Author(s):  
Young Soon Kim ◽  
Jung Seock Choi ◽  
Baek Il Nam ◽  
Moon Gu Baik ◽  
Takako Kato ◽  
...  

We investigate the third order harmonic generation for model atoms interacting with intense short laser pulses. We focus on the cases where the ponderomotive energy is not big enough to generate high-order harmonics, and where resonant transitions between bound states are also as important as multi-photon ionization and low-order harmonic generation. We find that the third order harmonic intensity from a model hydrogen atom can decrease as the laser frequency draws near a resonance between bound states. We explain this result by looking into the ionization and Rabi oscillation from the numerical calculation of the time-dependent 1-D Schrödinger equation. In order to support our explanation we also investigate the populations of bound states that play an important role in this atomic process.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3194
Author(s):  
Adrian Petris ◽  
Petronela Gheorghe ◽  
Tudor Braniste ◽  
Ion Tiginyanu

The ultrafast third-order optical nonlinearity of c-plane GaN crystal, excited by ultrashort (fs) high-repetition-rate laser pulses at 1550 nm, wavelength important for optical communications, is investigated for the first time by optical third-harmonic generation in non-phase-matching conditions. As the thermo-optic effect that can arise in the sample by cumulative thermal effects induced by high-repetition-rate laser pulses cannot be responsible for the third-harmonic generation, the ultrafast nonlinear optical effect of solely electronic origin is the only one involved in this process. The third-order nonlinear optical susceptibility of GaN crystal responsible for the third-harmonic generation process, an important indicative parameter for the potential use of this material in ultrafast photonic functionalities, is determined.


2004 ◽  
Vol 22 (1) ◽  
pp. 19-24 ◽  
Author(s):  
F. PEGORARO ◽  
S. ATZENI ◽  
M. BORGHESI ◽  
S. BULANOV ◽  
T. ESIRKEPOV ◽  
...  

Energetic ion beams are produced during the interaction of ultrahigh-intensity, short laser pulses with plasmas. These laser-produced ion beams have important applications ranging from the fast ignition of thermonuclear targets to proton imaging, deep proton lithography, medical physics, and injectors for conventional accelerators. Although the basic physical mechanisms of ion beam generation in the plasma produced by the laser pulse interaction with the target are common to all these applications, each application requires a specific optimization of the ion beam properties, that is, an appropriate choice of the target design and of the laser pulse intensity, shape, and duration.


Sign in / Sign up

Export Citation Format

Share Document